Load forecasting is an issue of great importance for the reliable operation of the electric power system grids. Various forecasting methodologies have been proposed in the international research bibliography, following different models and mathematical approaches. In the current work, several latest methodologies based on artificial neural networks along with other techniques have be discussed, in order to obtain short-term load forecasting. In this paper, approaches taken by different researchers considering different parameters in means of predicting the lease error has been shown. The paper investigates the application of artificial neural networks (ANN) with fuzzy logic (FL), Genetic Algorithm(GA), Particle Swarm Optimization(PSO) and Support Vector Machines(SVM) as forecasting tools for predicting the load demand in short term category. The extracted outcomes indicate the effectiveness of the proposed method, reducing the relative error between real and theoretical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.