Fens belong to the most threatened ecosystems in Europe. Maintaining a high water table through rewetting is an effective measure to rehabilitate many of their ecosystem functions. However, the impact of meteorological conditions such as vapor pressure deficit (VPD) and precipitation on water tables is still unclear for rewetted fens. Here, we compare the impact of meteorological factors on water table dynamics in a drained and a rewetted fen, using multiple regression with data from continuous high-resolution (temporal) water level monitoring and weather stations. We find that an increase in the daily mean VPD causes a higher drop in the water table at the drained and degraded fen compared to the rewetted fen. Precipitation contributes to recharge, causing the water table to rise higher at the drained site than at the rewetted site. We attribute the differential influence of meteorological conditions on water table dynamics to different soil specific yield values (i.e., water storage capacity) largely driven by lower water table position at the drained site. Our study underlines the importance of understanding how and why water tables in peatlands vary in response to meteorological factors for management decisions (e.g., rewetting). Continuous monitoring of water table and vegetation development in rewetted fen peatlands is advisable to ensure long-term success especially under climate change conditions and associated drought events.
<p>Fens belong to the most threatened ecosystems in Europe. Maintaining a high water table through rewetting is an effective measure to rehabilitate many of their ecosystem functions. However, the impact of meteorological factors such as relative humidity, precipitation and air temperature on water storage and its dynamics is still unclear especially for rewetted fens in the temperate regions. Here, we quantify the impact of meteorological factors on water table dynamics comparing a drained and a rewetted fen in North-East Germany, using multiple linear regression with data from continuous high-resolution (temporal) water level monitoring and weather stations. We found that a 1-degree rise in daily maximum air temperature causes a drop of about 4 mm in the water table in the drained and degraded fen but only a drop of around 2 mm at the rewetted site, mainly through evapotranspiration. Higher minimum relative humidity limits evapotranspiration and is, thus, negatively associated with water table elevation at both sites. Precipitation contributes to recharge, causing the water table to rise almost six times higher at the drained site than at the rewetted site. We attribute the differential impacts of meteorological factors on water table dynamics to (1) differences in vegetation, which acts as surface control and (2) differences in soil properties. We found that for the depths at which the groundwater fluctuates, the peat of the rewetted fen has a higher specific yield compared to the drained fen, causing the water table to rise or recede at smaller rates. A period of 20&#160;years of rewetting was sufficient to form a new layer of organic matter with a substantial fraction of macropores providing water storage capacity and thereby changing water table response. Our study underlines the importance of long-term rewetting and meteorological factors for peatland restoration. Continuous monitoring of water table and vegetation development in rewetted fens is advisable to ensure long-term success, especially under climate change conditions.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.