Two Series of organochalcogen compounds were prepared. The first series was prepared by the reaction of 2chloro-N-arylacetamide (where aryl is benzyl, phenyl, o-toluene, or p-toluene) with sodium hydrogen selenide (prepared in situ) to give diorganyl selenide compounds (R2Se). The second series was prepared by reaction of Nbenzyl-2-chloro-N-(2-chloroacetyl) acetamide with sodium chalcogenate , Na2E (where E= S, Se, and Te) to give the corresponding cyclic chalcogenide compounds. Diiodo derivatives of cyclic selenide and telluride were also prepared. The thermal stability of the new selenium compounds (R2Se) were decomposed at 300 o C. Thermogram showed a phase transfer point between 120-150 o C indicating that these compounds may act as liquid crystal compounds. All new compounds were characterized by CHN elemental analysis, UV-Visible, FT-IR and 1 H NMR spectroscopic data.
Ten chalcogen and mercury bearing compounds based on 4-aminobenzoic acid (i.e., (2-amino-5-(ethoxycarbonyl)phenyl)mercury(II) chloride (1), (2-amino-5-(ethoxycarbonyl)phenyl) phenyl selenide (2), (2-amino-5-(ethoxycarbonyl)phenyl) phenyl telluride (3), (4-carboxyphenyl)mercury(II) chloride (4), 4-selenocyanatobenzoic acid (5), 4-tellurocyanatobenzoic acid (6), bis(4-carboxyphenyl) diselenide (7) bis(4-carboxyphenyl) ditelluride (8), bis(4-carboxyphenyl) selenide (9) bis(4-carboxyphenyl) telluride (10) were prepared and characterized by various spectroscopic techniques. All compounds were screened for antibacterial activity against Gram-positive bacterial strains of Staphylococcus aureus and the Gram-negative bacteria Escherichia coli by using the disk diffusion technique. The antibacterial activity of these compounds was dependent on the molecular structure of the compounds, and the bacterial strain under consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.