In this work, we study the unsteady free convection boundary-layer flow of a nanofluid along a stretching sheet with thermal radiation in the presence of magnetic field. To obtain non-similar equations, continuity, momentum, energy, and concentration equations have been non-dimensionalized by usual transformation. The non-similar solutions are considered here which depend on the magnetic parameter M, radiation parameter R, Prandtl number P r , Eckert number E c , Lewis number L e , Brownian motion parameter N b , thermophoresis parameter N t , and Grashof number G r . The obtained equations have been solved by an explicit finite difference method with stability and convergence analysis. The velocity, temperature, and concentration profiles are discussed for different time steps and for the different values of the parameters of physical and engineering interest.
The present study analyzed numerically magneto-hydrodynamics (MHD) laminar boundary layer flow past a wedge with the influence of thermal radiation, heat generation and chemical reaction. This model used for the momentum, temperature and concentration fields. The principal governing equations is based on the velocity u
w(x) in a nanofluid and with a parallel free stream velocity u
e(x) and surface temperature and concentration. Similarity transformations are used to transform the governing nonlinear boundary layer equations for momentum, thermal energy and concentration to a system of nonlinear ordinary coupled differential equations with fitting boundary conditions. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, thermal convective parameter, mass convective parameter, radiation-conduction parameter, heat generation parameter, Prandtl number, Lewis number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with Runge–Kutta six order iteration schemes. Comparisons with previously published work are accomplished and proven an excellent agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.