We study the Markovian dynamics of a collection of n quantum systems coupled to an irreversible environmental channel consisting of a stream of n entangled qubits. Within the framework of repeated quantum interactions, we derive the master equation that describes the dynamics of the composite quantum system. We investigate the evolution of the joint system for two-qubit environments and find that (1) the presence of antidiagonal coherences (in the local basis) in the environment is a necessary condition for entangling two remote systems, and (2) that maximally entangled two-qubit baths are an exceptional point without a unique steady state. For the general case of n-qubit environments we show that coherences in maximally entangled baths (when expressed in the local energy basis), do not affect the system evolution in the weak coupling regime.
The use of quantum resources can provide measurement precision beyond the shot-noise limit (SNL). The task of ab initio optical phase measurement—the estimation of a completely unknown phase—has been experimentally demonstrated with precision beyond the SNL, and even scaling like the ultimate bound, the Heisenberg limit (HL), but with an overhead factor. However, existing approaches have not been able—even in principle—to achieve the best possible precision, saturating the HL exactly. Here we demonstrate a scheme to achieve true HL phase measurement, using a combination of three techniques: entanglement, multiple samplings of the phase shift, and adaptive measurement. Our experimental demonstration of the scheme uses two photonic qubits, one double passed, so that, for a successful coincidence detection, the number of photon-passes is N = 3. We achieve a precision that is within 4% of the HL. This scheme can be extended to higher N and other physical systems.
It was recently argued (Wiseman and Gambetta 2012 Phys. Rev. Lett. 108 220402) that the stochastic dynamics (jumps or diffusion) of an open quantum system are not inherent to the system, but rather depend on the existence and nature of a distant detector. The proposed experimental tests involved homodyne detection, giving rise to quantum diffusion, and required efficiencies η of well over 50%. Here we prove that this requirement (η > 0.5) is universal for diffusive-type detection, even if the system is coupled to multiple baths. However, this no-go theorem does not apply to quantum jumps, and we propose a test involving a qubit with jump-type detectors, with a threshold efficiency of only 37%. That is, quantum jumps are 'more quantum', and open the way to practical experimental tests. Our scheme involves a novel sort of adaptive monitoring scheme on a system coupled to two baths.A surprising prediction of quantum entanglement theory is that the stochastic dynamics of individual open quantum systems (e.g. the quantum jumps of atoms) are not inherent to the system, but rather depend upon the presence, and nature, of a distant, macroscopic detector (e.g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.