Stability with first time or reactivated landslides depends upon the residual shear strength of soil. This paper describes prediction of the residual strength of soil based on index properties using two machine learning techniques. Different Artificial Neural Network (ANN) models and Support Vector Machine (SVM) techniques have been used. SVM aims at minimizing a bound on the generalization error of a model rather than at minimizing the error on the training data only. The ANN models along with their generalizations capabilities are presented here for comparisons. This study also highlights the capability of SVM model over ANN models for the prediction of the residual strength of soil. Based on different statistical parameters, the SVM model is found to be better than the developed ANN models. A model equation has been developed for prediction of the residual strength based on the SVM for practicing geotechnical engineers. Sensitivity analyses have been also performed to investigate the effects of different index properties on the residual strength of soil. Keywords
a b s t r a c tLandslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks (FN) using data available in the literature. The performance of FN was compared with support vector machine (SVM) and artificial neural network (ANN) based on statistical parameters like correlation coefficient (R), NashSutcliff coefficient of efficiency (E), absolute average error (AAE), maximum average error (MAE) and root mean square error (RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output. Ó 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.