Attention is increasingly focusing on how best to accelerate progress toward meeting the WHO’s 2030 goals for neglected tropical diseases (NTDs). For river blindness, a major NTD targeted for elimination, there is a long history of using vector control to suppress transmission, but traditional larvicide-based approaches are limited in their utility. One innovative and sustainable approach, “slash and clear”, involves clearing vegetation from breeding areas, and recent field trials indicate that this technique very effectively reduces the biting density of Simulium damnosum s.s. In this study, we use a Bayesian data-driven mathematical modeling approach to investigate the potential impact of this intervention on human onchocerciasis infection. We developed a novel “slash and clear” model describing the effect of the intervention on seasonal black fly biting rates and coupled this with our population dynamics model of Onchocerca volvulus transmission. Our results indicate that supplementing annual drug treatments with “slash and clear” can significantly accelerate the achievement of onchocerciasis elimination. The efficacy of the intervention is not very sensitive to the timing of implementation, and the impact is meaningful even if vegetation is cleared only once per year. As such, this community-driven technique will represent an important option for achieving and sustaining O. volvulus elimination.
We analyze the bifurcations of a family of time-delayed Hénon maps of increasing dimension and determine the regions where the motion is attracted to different dynamical states. As a function of parameters that govern nonlinearity and dissipation, boundaries that confine asymptotic periodic motion are determined analytically, and we examine their dependence on the dimension d. For large d these boundaries converge. In low dimensions both the period-doubling and quasiperiodic routes to chaos coexist in the parameter space, but for high dimensions the latter predominates and prior to the onset of chaos, the systems exhibit multistability. When the nonlinearity parameter is varied, the dimension of chaotic attractors in the systems changes smoothly with increasing number of non-negative Lyapunov exponents.
We study dynamical systems on a hypernetwork, namely by coupling them through several variables. For the case when the coupling(s) are all linear, a comprehensive analysis of the master stability function (MSF) for synchronized dynamics is presented and, through application to a number of paradigmatic examples, the typical forms of the MSF are discussed. The MSF formalism for hypernetworks also provides a framework to study synchronization in systems that are diffusively coupled through dissimilar variables-the so-called conjugate coupling that can lead to amplitude or oscillation death.
The advent and distribution of vaccines against SARS-CoV-2 in late 2020 was thought to represent an effective means to control the ongoing COVID-19 pandemic. This optimistic expectation was dashed by the omicron waves that emerged over the winter of 2021/2020 even in countries that had managed to vaccinate a large fraction of their populations, raising questions about whether it is possible to use scientific knowledge along with predictive models to anticipate changes and design management measures for the pandemic. Here, we used an extended SEIR model for SARS-CoV-2 transmission sequentially calibrated to data on cases and interventions implemented in Florida until Sept. 24th 2021, and coupled to scenarios of plausible changes in key drivers of viral transmission, to evaluate the capacity of such a tool for exploring the future of the pandemic in the state. We show that while the introduction of vaccinations could have led to the permanent, albeit drawn-out, ending of the pandemic if immunity acts over the long-term, additional futures marked by complicated repeat waves of infection become possible if this immunity wanes over time. We demonstrate that the most recent omicron wave could have been predicted by this hybrid system, but only if timely information on the timing of variant emergence and its epidemiological features were made available. Simulations for the introduction of a new variant exhibiting higher transmissibility than omicron indicated that while this will result in repeat waves, forecasted peaks are unlikely to reach that observed for the omicron wave owing to levels of immunity established over time in the population. These results highlight that while limitations of models calibrated to past data for precisely forecasting the futures of epidemics must be recognized, insightful predictions of pandemic futures are still possible if uncertainties about changes in key drivers are captured appropriately through plausible scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.