Single residue mutations in proteins are known to affect protein stability and function. As a consequence, they can be disease associated. Available computational methods starting from protein sequence/structure can predict whether a mutated residue is or not disease associated and whether it is promoting instability of the protein-folded structure. However, the relationship among stability changes in proteins and their involvement in human diseases still needs to be fully exploited. Here, we try to rationalize in a nutshell the complexity of the question by generalizing over information already stored in public databases. For each single aminoacid polymorphysm (SAP) type, we derive the probability of being disease-related (Pd) and compute from thermodynamic data three indexes indicating the probability of decreasing (P-), increasing (P+), and perturbing the protein structure stability (Pp). Statistically validated analysis of the different P/Pd correlations indicate that Pd best correlates with Pp. Pp/Pd correlation values are as high as 0.49, and increase up to 0.67 when data variability is taken into consideration. This is indicative of a medium/good correlation among Pd and Pp and corroborates the assumption that protein stability changes can also be disease associated at the proteome level.
The computational approaches in determining disease-associated Non-synonymous single nucleotide polymorphisms (nsSNPs) have evolved very rapidly. Large number of deleterious and disease-associated nsSNP detection tools have been developed in last decade showing high prediction reliability. Despite of all these highly efficient tools, we still lack the accuracy level in determining the genotype-phenotype association of predicted nsSNPs. Furthermore, there are enormous questions that are yet to be computationally compiled before we might talk about the prediction accuracy. Earlier we have incorporated molecular dynamics simulation approaches to foster the accuracy level of computational nsSNP analysis roadmap, which further helped us to determine the changes in the protein phenotype associated with the computationally predicted disease-associated mutation. Here we have discussed on the present scenario of computational nsSNP characterization technique and some of the questions that are crucial for the proper understanding of pathogenicity level for any disease associated mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.