Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73 % of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-c production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute significantly to the observed T cell responses.
Background and Purpose-The Paul Coverdell National Acute Stroke Registry is being developed to improve the quality of acute stroke care. This article describes key features of acute stroke care from 4 prototype registries in Georgia (Ga), Massachusetts (Mass), Michigan (Mich), and Ohio. Methods-Each prototype developed its own sampling scheme to obtain a representative sample of hospitals. Acute stroke admissions were identified using prospective (Mass, Mich) or retrospective (Ga, Ohio) methods. All prototypes used a common set of case definitions and data elements. Weighted site-specific frequencies were generated for each outcome. Results-A total of 6867 admissions from 98 hospitals were included; the majority were ischemic strokes (range, 52% to 70%) with transient ischemic attack and intracerebral hemorrhage comprising the bulk of the remainder. Between 19% and 26% of admissions were younger than age 60 years, and between 52% and 58% were female. Black subjects varied from 7.1% (Mich) to 30.6% (Ga). Between 20% and 25% of admissions arrived at the emergency department within 3 hours of onset. Treatment with recombinant tissue plasminogen activator (rtPA) was administered to between 3.0% (Ga) and 8.5% (Mass) of ischemic stroke admissions. Of 118 subjects treated with intravenous rtPA, Ͻ20% received it within 60 minutes of arrival. Compliance with secondary prevention practices was poorest for smoking cessation counseling and best for antithrombotics. Conclusions
The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI–MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these were further classified as ‘membrane-bound’, three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium.
The sonic hedgehog (SHH) pathway is activated in several types of malignancy and plays an important role in tumor cell proliferation and tumorigenesis. SHH binding to a 12-pass transmembrane receptor, Patched (PTCH), leads to freeing of Smoothened (SMO) and subsequent activation of GLI transcription factors. In the present study, we analyzed the expression of SHH, PTCH, SMO, and GLI1 in 31 follicular thyroid adenomas (FTA), 8 anaplastic thyroid carcinomas (ATC), and 51 papillary thyroid carcinomas (PTC) by immunohistochemical staining. More than 65% of FTA, PTC, and ATC specimens stained positive for SHH, PTCH, SMO, and GLI. However, the expression of the genes encoding these four molecules did not correlate with any clinicopathologic parameters, including the age, gender, the status of BRAF gene mutation, tumor stage, local invasion, and metastasis. Three thyroid tumor cell lines (KAT-18, WRO82, and SW1736) all expressed the genes encoding these four molecules. 5-Bromo-2-deoxyuridine labeling and MTT cell proliferation assays revealed that cyclopamine (CP), an inhibitor of the SHH pathway, was able to inhibit the proliferation of KAT-18 and WRO82 cells more effectively than SW1736 cells. CP led to the arrest of cell cycle or apoptosis. Knockdown of SHH and GLI expression by miRNA constructs that target SHH or GLI mRNA in KAT-18 and SW1736 cells led to the inhibition of cell proliferation. Our results suggest that the SHH pathway is widely activated in thyroid neoplasms and may have potential as an early marker of thyroid cancer or as a potential therapeutic target for thyroid cancer treatment.
Join "IndPharm" IJP uses "IndPharm" to broadcast announcements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.