Medical care has become one of the most indispensable parts of human lives, leading to a dramatic increase in medical big data. To streamline the diagnosis and treatment process, healthcare professionals are now adopting Internet of Things (IoT)-based wearable technology. Recent years have witnessed billions of sensors, devices, and vehicles being connected through the Internet. One such technology—remote patient monitoring—is common nowadays for the treatment and care of patients. However, these technologies also pose grave privacy risks and security concerns about the data transfer and the logging of data transactions. These security and privacy problems of medical data could result from a delay in treatment progress, even endangering the patient’s life. We propose the use of a blockchain to provide secure management and analysis of healthcare big data. However, blockchains are computationally expensive, demand high bandwidth and extra computational power, and are therefore not completely suitable for most resource-constrained IoT devices meant for smart cities. In this work, we try to resolve the above-mentioned issues of using blockchain with IoT devices. We propose a novel framework of modified blockchain models suitable for IoT devices that rely on their distributed nature and other additional privacy and security properties of the network. These additional privacy and security properties in our model are based on advanced cryptographic primitives. The solutions given here make IoT application data and transactions more secure and anonymous over a blockchain-based network.
Sharing a file that contains multimedia data among the different peers of wireless Internet of Things (IoT) networks has several challenges. One of the main challenges is their centralized system, which leads to high‐security risk and low user reachability. One solution could be to simply change the system to a decentralized network by using the blockchain network to store these files. However, it may solve the low user reachability and security problem at the cost of low latency, longer response time, scalability and privacy issues. Therefore, this article uses the advanced blockchain scheme and distributes InterPlanetary File System. We also presented the system framework and its working. Finally, we do the security analysis of our proposed system and found that it has strong potential to solve most of the security challenges that traditional system faces. Moreover, our proposed approach can be applied to any file‐changing wireless IoT network that needs to exchange multimedia data such as healthcare data, IoT data in wearable devices, traffic data in smart cities, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.