Surface engineering of ultrathin MXene nanosheets vial-ascorbic acid treatment under ambient conditions makes them more appealing for practical applications.
We report the breakdown electric field and energy density of laser ablated BaTiO(3)/Ba((1-x))Sr(x)TiO(3) (x = 0.7) (BT/BST) relaxor-ferroelectric superlattices (SLs) grown on (100) MgO single crystal substrates. The dielectric constant shows a frequency dispersion below the dielectric maximum temperature (T(m)) with a merger above T(m) behaving similarly to relaxors. It also follows the basic criteria of relaxor ferroelectrics such as low dielectric loss over wide temperature and frequency, and 50 K shift in T(m) with change in probe frequency; the loss peaks follow a similar trend to the dielectric constant except that they increase with increase in frequency (~40 kHz), and satisfy the nonlinear Vogel-Fulcher relation. Well-saturated ferroelectric hysteresis and 50-80% dielectric saturation are observed under high electric field (~1.65 MV cm(-1)). The superlattices demonstrate an 'in-built' field in as grown samples at low probe frequency (<1 kHz), whereas it becomes more symmetric and centered with increase in the probe frequency system (>1 kHz) which rules out the effect of any space charge and interfacial polarization. The P-E loops show around 12.24 J cm(-3) energy density within the experimental limit, but extrapolation of this data suggests that the potential energy density could reach 46 J cm(-3). The current density versus applied electric field indicates an exceptionally high breakdown field (5.8-6.0 MV cm(-1)) and low current density (~10-25 mA cm(-2)) near the breakdown voltage. The current-voltage characteristics reveal that the space charge limited conduction mechanism prevails at very high voltage.
The discovery of lead-free piezoelectric materials is crucial for future information and energy storage applications. Enhanced piezoelectric and other physical properties are commonly observed near the morphotropic phase boundary (MPB) composition of ferroelectric solid solutions. The (1-x)Ba(Zr 0.2 Ti 0.8 )O 3 -x(Ba 0.7 Ca 0.3 )TiO 3 (BZT-xBCT) system exhibits a large electromechanical response around its MPB region at x=0.5. We report experimental and theoretical results of BZT-xBCT over a wide composition range (0.3≤x≤1.0). X-ray diffraction and Raman spectroscopy studies indicate a composition-induced structural phase transition from a rhombohedral (R3m) phase at x≤0.4 to a tetragonal (P4mm) phase at x≥0.6 through a multiphase coexistence region at 0.45≤x≤0.55 involving orthorhombic + tetragonal (Amm2+P4mm) phases. First-principles calculations elucidate the phase competition in the coexistence region. The critical composition (x= 0.5) displays enhanced dielectric, ferroelectric and piezoelectric properties, where notably d 33 ~ 320 pC/N. This work provides clear evidence of Amm2+P4mm crystallographic phases in the MPB region, which is responsible for the improved functional properties.
We report studies of the ferroelectric and magnetic phase transitions of (1 – x)Pb(Fe0.5Nb0.5)O3 – xCo0.65Zn0.35Fe2O4 (x = 0.2) composite with emphasis upon the nature of magnetoelectric coupling at room temperature. The presence of all cationic elements with their required stoichiometry have been confirmed by SEM and XPS studies. The composite shows well-saturated ferroelectric and ferromagnetic (multiferroic) behavior at room temperature. A ferroelectric-paraelectric phase transition has been confirmed from the temperature dependent dielectric spectra along with DSC and Raman spectroscopic studies. Antiferromagnetic, ferromagnetic, and relaxor paramagnetic states have been observed in this composite. This composite shows strong bulk biquadratic magnetoelectric coupling at room temperature, which can be useful for potential multifunctional device applications.
We describe systematic studies on Nd and Mn co-doped BiFeO 3 , i.e., (Bi 0.95 Nd 0.05 ) (Fe 0.97 Mn 0.03 )O 3 (BNFM) polycrystalline electroceramics. Raman spectra and X-ray diffraction patterns revealed the formation of rhombohedral crystal structure at room temperature, and ruled out structural changes in BiFeO 3 (BFO) after low percentage chemical substitution. Strong dielectric dispersion and a sharp anomaly around 620 K observed near the Neel temperature (T N $ 643 K of BFO) support strong magneto-dielectric coupling, verified by the exothermic peak in differential thermal data. Impedance spectroscopy disclosed the appearance of grain boundary contributions in the dielectric data in the region, and their disappearance just near the Neel temperature suggests magnetically active grain boundaries. The resistive grain boundary components of the BNFM are mainly responsible for magneto-dielectric coupling. Capacitive grain boundaries are not observed in the modulus spectra and the dielectric behavior deviates from the ideal Debye-type. The ac conduction studies illustrate short-range order with ionic translations assisted by both large and small polaron hopping. Magnetic studies indicate that the weak antiferromagnetic phase of BNFM ceramics is dominated by a strong paramagnetic response (unsaturated magnetization even at applied magnetic field of 7 T). The bulk BNFM sample shows a good in-plane magnetoelectric coupling (ME) coefficient. V C 2015 AIP Publishing LLC. [http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.