The world has transitioned into a new phase of online learning in response to the recent Covid19 pandemic. Now more than ever, it has become paramount to push the limits of online learning in every manner to keep flourishing the education system. One crucial component of online learning is Knowledge Tracing (KT). The aim of KT is to model student's knowledge level based on their answers to a sequence of exercises referred as interactions. Students acquire their skills while solving exercises and each such interaction has a distinct impact on student ability to solve a future exercise. This impact is characterized by 1) the relation between exercises involved in the interactions and 2) student forget behavior. Traditional studies on knowledge tracing do not explicitly model both the components jointly to estimate the impact of these interactions. In this paper, we propose a novel Relation-aware self-attention model for Knowledge Tracing (RKT). We introduce a relation-aware self-attention layer that incorporates the contextual information. This contextual information integrates both the exercise relation information through their textual content as well as student performance data and the forget behavior information through modeling an exponentially decaying kernel function. Extensive experiments on three real-world datasets, among which two new collections are released to the public, show that our model outperforms state-ofthe-art knowledge tracing methods. Furthermore, the interpretable attention weights help visualize the relation between interactions and temporal patterns in the human learning process.
Social Network depicts the relationship like friendship, common interests etc. among various individuals. Social Network Analysis deals with analysis of these social relationships. Link prediction algorithms are used to predict these social relationships. Given a social network graph in which a node represents a user and an edge represents the relationship between the users, link prediction algorithm predicts the possible new relationships that can be created in the future. This paper compares these link prediction algorithms on the basis of performance metrics like accuracy, precision, specificity and sensitivity.
The increased awareness regarding the impact of energy consumption on the environment has led to an increased focus on reducing energy consumption. Feedback on the appliance level energy consumption can help in reducing the energy demands of the consumers. Energy disaggregation techniques are used to obtain the appliance level energy consumption from the aggregated energy consumption of a house. These techniques extract the energy consumption of an individual appliance as features and hence face the challenge of distinguishing two similar energy consuming devices. To address this challenge we develop methods that leverage the fact that some devices tend to operate concurrently at specific operation modes. The aggregated energy consumption patterns of a subgroup of devices allows us to identify the concurrent operating modes of devices in the subgroup. Thus, we design hierarchical methods to replace the task of overall energy disaggregation among the devices with a recursive disaggregation task involving device subgroups. Experiments on two real-world datasets show that our methods lead to improved performance as compared to baseline. One of our approaches, Greedy based Device Decomposition Method (GDDM) achieved up to 23.8%, 10% and 59.3% improvement in terms of micro-averaged f score, macro-averaged f score and Normalized Disaggregation Error (NDE), respectively.
With the advancement in technology, the consumption of news has shifted from Print media to social media. The convenience and accessibility are major factors that have contributed to this shift in consumption of the news. However, this change has bought upon a new challenge in the form of “Fake news” being spread with not much supervision available on the net. In this paper, this challenge has been addressed through a Machine learning concept. The algorithms such as K-Nearest Neighbor, Support Vector Machine, Decision Tree, Naïve Bayes and Logistic regression Classifiers to identify the fake news from real ones in a given dataset and also have increased the efficiency of these algorithms by pre-processing the data to handle the imbalanced data more appropriately. Additionally, comparison of the working of these classifiers is presented along with the results. The model proposed has achieved an accuracy of 89.98% for KNN, 90.46% for Logistic Regression, 86.89% for Naïve Bayes, 73.33% for Decision Tree and 89.33% for SVM in our experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.