DNA replication is one of the specific processes to be considered in all the living organisms, specifically eukaryotes. The prevalence of DNA replication is significant for an evolutionary transition at the beginning of life. DNA replication proteins are those proteins which support the process of replication and are also reported to be important in drug design and discovery. This information depicts that DNA replication proteins have a very important role in human bodies, however, to study their mechanism, their identification is necessary. Thus, it is a very important task but, in any case, an experimental identification is time-consuming, highly-costly and laborious. To cope with this issue, a computational methodology is required for prediction of these proteins, however, no prior method exists. This study comprehends the construction of novel prediction model to serve the proposed purpose. The prediction model is developed based on the artificial neural network by integrating the position relative features and sequence statistical moments in PseAAC for training neural networks. Highest overall accuracy has been achieved through tenfold cross-validation and Jackknife testing that was computed to be 96.22% and 98.56%, respectively. Our astonishing experimental results demonstrated that the proposed predictor surpass the existing models that can be served as a time and cost-effective stratagem for designing novel drugs to strike the contemporary bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.