One challenge of studying cloud workload traces is the lack of available users’ identities. Therefore, clustering methods were used to address this challenge through extracting these identities from workload traces. For better extraction, it is beneficial to select attributes (columns in the traces) for clustering by using feature selection methods. However, the use of general selection methods requires details that are not available for workload traces (e.g. predefined number of clusters). Therefore, in this paper, we present an unsupervised feature selection method for cloud workload traces to identify good candidate attributes for clustering. This method uses Silhouette coefficients to rank attributes that are best for users’ extraction through clustering. The performance of our SeQual method is evaluated in comparison with commonly used (supervised and unsupervised) feature selection methods with the help of clustering quality metrics (i.e. adjusted rand index, entropy and precision). The results show that the SeQual method can compete with the supervised methods and perform better than unsupervised ones, with an average accuracy between 90% and 99%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.