The modern Western diet is rich in advanced glycation end products (AGEs). We have previously shown an association between dietary AGEs and markers of inflammation and oxidative stress in a population of end stage renal disease (ESRD) patients undergoing peritoneal dialysis (PD). In the current pilot study we explored the effects of dietary AGEs on the gut bacterial microbiota composition in similar patients. AGEs play an important role in the development and progression of cardiovascular (CVD) disease. Plasma concentrations of different bacterial products have been shown to predict the risk of incident major adverse CVD events independently of traditional CVD risk factors, and experimental animal models indicates a possible role AGEs might have on the gut microbiota population. In this pilot randomized open label controlled trial, twenty PD patients habitually consuming a high AGE diet were recruited and randomized into either continuing the same diet (HAGE, n = 10) or a one-month dietary AGE restriction (LAGE, n = 10). Blood and stool samples were collected at baseline and after intervention. Variable regions V3-V4 of 16s rDNA were sequenced and taxa was identified on the phyla, genus, and species levels. Dietary AGE restriction resulted in a significant decrease in serum Nε-(carboxymethyl) lysine (CML) and methylglyoxal-derivatives (MG). At baseline, our total cohort exhibited a lower relative abundance of Bacteroides and Alistipes genus and a higher abundance of Prevotella genus when compared to the published data of healthy population. Dietary AGE restriction altered the bacterial gut microbiota with a significant reduction in Prevotella copri and Bifidobacterium animalis relative abundance and increased Alistipes indistinctus, Clostridium citroniae, Clostridium hathewayi, and Ruminococcus gauvreauii relative abundance. We show in this pilot study significant microbiota differences in peritoneal dialysis patients’ population, as well as the effects of dietary AGEs on gut microbiota, which might play a role in the increased cardiovascular events in this population and warrants further studies.
Several lines of evidence suggest that gut bacterial microbiota is altered in patients with chronic kidney disease (CKD), though the mechanism of which this dysbiosis takes place is not well understood. Recent studies delineated changes in gut microbiota in both CKD patients and experimental animal models using microarray chips. We present 16S ribosomal RNA gene sequencing of both stool pellets and small bowel contents of C57BL/6J mice that underwent a remnant kidney model and establish that changes in microbiota take place in the early gastrointestinal tract. Increased intestinal urea concentration has been hypothesized as a leading contributor to dysbiotic changes in CKD. We show that urea transporters (UT)-A and UT-B mRNA are both expressed throughout the whole gastrointestinal tract. The noted increase in intestinal urea concentration appears to be independent of UTs' expression. Urea supplementation in drinking water resulted in alteration in bacterial gut microbiota that is quite different than that seen in CKD. This indicates that increased intestinal urea concentration might not fully explain the CKD- associated dysbiosis.
Gut bacterial microbiota is altered in patients with advanced renal disease and those on dialysis. However, it is not clear yet what bacterial composition changes are due to the renal insufficiency per se, and what are in result of the accompanying interventions and comorbid conditions. Most studies analyzed diabetic nephropathy, hypertensive nephropathy, and glomerulonephritis patients which might have directly influenced the microbiome regardless of alterations in renal function. We present in this report changes in gut bacterial microbiota in a highly selected group of patients with strict inclusion criteria to eliminate the effects of the confounding factors on the microbiome composition. We conducted multiple analysis approaches according to participants’ renal function to further understand microbiome alteration in different degrees of renal insufficiency. An interesting group of bacteria showed a step-wise change in relative abundance in response to the three groups’ analysis. These bacteria either decreased or increased from mild, moderate to severe renal insufficiency indicating strong and direct effects of the uremic milieu on its relative abundance. We also ran a sensitivity analysis that took into account an assembly of the significant taxa observed in an approach to investigate whether these taxa can fully explain the separation noted between the groups. We determined the projected metabolic pathways altered according to the gut microbiota composition changes. This report not only delineates with a higher certainty the effects of alteration in renal function on the microbiome, but also explores the possible role of dysbiosis on comorbid conditions through alterations in the projected metabolic pathways. Impact statement The heterogeneity of the renal disease, therapeutic interventions, and the original cause of the renal failure, all directly affect the microbiota. We delineate in this report the direct effect of decreased renal function on the bacterial composition following stringent criteria to eliminate the possibilities of other confounding factors and dissect the direct effects of the uremic milieu. We analyzed the microbiome following three different approaches to further evaluate the effects of mild, moderate and advanced renal insufficiency on the microbiome. We also present here a detailed functional analysis of the projected altered pathways secondary to changes in the microbiome composition.
Patients with chronic kidney disease (CKD) and end stage renal disease suffer from increased cardiovascular events and cardiac mortality. Prior studies have demonstrated a portion of this enhanced risk can be attributed to the accumulation of microbiota-derived toxic metabolites, with most studies focusing on the sulfonated form of p-cresol (PCS). However, unconjugated p-cresol (uPC) itself was never assessed due to rapid and extensive first pass metabolism that results in negligible serum concentrations of uPC.These reports thus failed to consider the host exposure to uPC prior to hepatic metabolism. In the current study, we not only measured the impact of altering the intestinal microbiota on lipid accumulation in coronary arteries, but also examined macrophage lipid uptake and handling pathways in response to uPC.We found atherosclerotic-prone mice fed a high fat diet exhibited significantly higher coronary artery lipid deposits upon receiving fecal material from CKD mice. Furthermore, treatment with uPC increased total cholesterol, triglycerides, hepatic, and aortic fatty deposits in non-CKD mice. Studies employing an in vitro macrophage model demonstrated uPC exposure increased apoptosis where PCS did not. Additionally, uPC exhibited higher potency than PCS to stimulate low density lipoprotein (LDL) uptake and only uPC induced endocytosis and pinocytosis-related genes. Pharmacological inhibition of varying cholesterol influx and efflux systems indicated that uPC increased macrophage LDL uptake by activating macropinocytosis.Overall, these findings indicate uPC itself has a distinct impact on macrophage biology that may contribute to increased cardiovascular risk in patients with CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.