The heterogeneity of exosomal populations has hindered our understanding
of their biogenesis, molecular composition, biodistribution, and functions. By
employing asymmetric-flow field-flow fractionation (AF4), we identified two
exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome
vesicles, Exo-S, 60-80 nm) and discovered an abundant population of
non-membranous nanoparticles termed “exomeres” (~35 nm).
Exomere proteomic profiling revealed an enrichment in metabolic enzymes and
hypoxia, microtubule and coagulation proteins and specific pathways, such as
glycolysis and mTOR signaling. Exo-S and Exo-L contained proteins involved in
endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5
signaling pathways, respectively. Exo-S, Exo-L, and exomeres each had unique
N-glycosylation, protein, lipid, and DNA and RNA profiles
and biophysical properties. These three nanoparticle subsets demonstrated
diverse organ biodistribution patterns, suggesting distinct biological
functions. This study demonstrates that AF4 can serve as an improved analytical
tool for isolating and addressing the complexities of heterogeneous nanoparticle
subpopulations.
Although a range of nanoparticles have been developed as drug delivery systems in cancer therapeutics, this approach faces several important challenges concerning nanocarrier circulation, clearance, and penetration. The impact of reducing nanoparticle size on penetration through leaky blood vessels around tumor microenvironments via enhanced permeability and retention (EPR) effect has been extensively examined. Recent research has also investigated the effect of nanoparticle shape on circulation and target binding affinity. However, how nanoparticle shape affects drug release and therapeutic efficacy has not been previously explored. Here, we compared the drug release and efficacy of iron oxide nanoparticles possessing either a cage shape (IO-NCage) or a solid spherical shape (IO-NSP). Riluzole cytotoxicity against metastatic cancer cells was enhanced three-fold with IO-NCage. The shape of nanoparticles (or nanocages) affected the drug release point and cellular internalization, which in turn influenced drug efficacy. Our study provides evidence that the shape of iron oxide nanoparticles has a significant impact on drug release and efficacy.
While regulatory T (Treg) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct Treg cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral Treg cell ‘connectivity’ to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual Treg cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings. Factor analysis revealed shared Treg cell-dependent gene programs, foremost, prominent upregulation of VEGF and CCR2 signaling-related genes upon Treg cell deprivation in either setting, as well as in Treg cell-poor versus Treg cell-rich human lung adenocarcinomas. Accordingly, punctual Treg cell depletion combined with short-term VEGF blockade showed markedly improved control of PD-1 blockade-resistant lung adenocarcinoma progression in mice compared to the corresponding monotherapies, highlighting a promising factor-based querying approach to elucidating new rational combination treatments of solid organ cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.