Folic acid is vital for DNA synthesis and methylations through one-carbon (C1) metabolism. Thus, it is essential for cell division during embryonic development. The present study investigated the effect of folic acid supplementation on oocyte maturation, blastocyst development and the expression of folate transporters as well as folate metabolism enzymes in oocytes and pre-implantation embryos of goat.Immature goat oocytes, matured in maturation medium comprising different folic acid concentrations (0, 10, 50, 100 and 150 µM), were in vitro fertilized and cultured. Cumulus expansion markers (Ptx3 and Ptgs2) in cumulus cells were highly upregulated after 50 µM folic acid supplementation indicating higher degree of maturation. Supplementation of 50 µM folic acid during oocyte maturation resulted in signi cantly higher blastocyst production rate, reduction in intracellular ROS levels as well as upregulation of the transcripts for folate transporters and key folate-methionine cycle enzymes in comparison to control. The present study demonstrates the existence of active folate-methionine cycle in oocytes and pre-implantation goat embryos. Supplementation of 50 µM folic acid in maturation medium increases the blastocyst production rate, improves oocyte maturation, reduces ROS production as well as upregulate the expression of Folr1 and folate metabolism enzyme, Mtr.
Folic acid is vital for DNA synthesis and methylations through one-carbon (C1) metabolism. Thus, it is essential for cell division during embryonic development. The present study investigated the effect of folic acid supplementation on oocyte maturation, blastocyst development and the expression of folate transporters as well as folate metabolism enzymes in oocytes and pre-implantation embryos of goat. Immature goat oocytes, matured in maturation medium comprising different folic acid concentrations (0, 10, 50, 100 and 150 µM), were in vitro fertilized and cultured. Cumulus expansion markers (Ptx3 and Ptgs2) in cumulus cells were highly upregulated after 50 µM folic acid supplementation indicating higher degree of maturation. Supplementation of 50 µM folic acid during oocyte maturation resulted in significantly higher blastocyst production rate, reduction in intracellular ROS levels as well as upregulation of the transcripts for folate transporters and key folate-methionine cycle enzymes in comparison to control. The present study demonstrates the existence of active folate-methionine cycle in oocytes and pre-implantation goat embryos. Supplementation of 50 µM folic acid in maturation medium increases the blastocyst production rate, improves oocyte maturation, reduces ROS production as well as upregulate the expression of Folr1 and folate metabolism enzyme, Mtr.
The present study was carried out to isolate mesenchymal stem cells (MSCs) from adipose tissue of cattle (Bos indicus), characterise them, and apply them for the treatment of mastitis and metritis in the cow. Cattle MSCs were isolated from adipose tissue near the loin region of cow. Isolated adipose tissue was subjected to enzymatic digestion using 2% collagenase with agitation at regular intervals. The cells obtained after digestion were resuspended in cell culture flasks containing growth enriched medium and cultured under standard culture conditions. Alkaline phosphatase staining was used as one of the parameters to confirm cultured putative MSCs. Bovine Ad-MSCs were further characterised using real time-PCR by amplification of MSC-specific markers: CD73, CD90, and CD105 as positive markers and CD34, CD45, and CD79a as negative markers. Immunocytochemistry showed the presence of CD73, CD90, and CD105 on the cell surface. Three groups-control (C), local (L), and intravenous (IV)-with 6 cows suffering from mastitis were taken in each group and subjected to MSC transplantation through local and intravenous routes. Control group animals were subjected to antibiotic treatment only. Similarly, another three groups were taken with 6 cows in each group suffering from metritis. Post-transplantation wound healing, tissue repair, and reduction in inflammation were monitored for 26 days, at different time intervals; that is, after Days 1, 3, 7, and 15. Blood samples were also collected from animals at the same time intervals for real time-PCR. A similar examination was also done in metritis groups along with the analysis of the reduction in turbidity of cervical fluid at the abovementioned time intervals. Real time-PCR was performed to determine relative expression of genes for proliferative factors, anti-inflammatory cytokines, and antimicrobial peptides on cells isolated from blood collected at different time intervals. Gene expression in the local group of mastitis subjected to MSC injection was significantly higher than that of the IV and control group. The somatic cell count declined in both local and IV groups compared with the control group. Whereas the expression of the same genes in the IV group of metritis was significantly higher than that of the local and control groups of cows. The turbidity of cervical fluid and mucus was reduced in the IV group compared with the local group. In conclusion, we demonstrated the healing potential of MSCs in a cow model via MSC injection. Promising results were obtained in curing mastitis in both local and IV groups, whereas healing in the case of metritis was significantly higher in the IV group compared with both the control and local groups of cows. The study indicates the potential use of MSc for treatment of mastitis and metritis in cattle through wound healing and decreasing microbial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.