Summary
Epithelial-mesenchymal transition (EMT) is a critical process that occurs during the embryonic development, wound healing, organ fibrosis and the onset of malignancy. Emerging evidence suggests that the EMT is involved in the invasion and metastasis of cancers. The inflammatory reaction antecedent to fibrosis in the onset of oral submucous fibrosis (OSF) and the role of EMT in its malignant transformation indicates a hitherto unexplored involvement of EMT. This review focuses on the role of EMT markers which are regulators of the EMT mediated complex network of molecular mechanisms involved in the pathogenesis of OSF and OSCC. Further the gene enrichment analysis and pathway analysis supports the association of the upregulated and downregulated genes in various EMT regulating pathways.
Background
Mitochondrial disorders are clinically complex and have highly variable phenotypes among all inherited disorders. Mutations in mitochon
drial DNA (mtDNA) and nuclear genome or both have been reported in mitochondrial diseases suggesting common pathophysiological pathways. Considering the clinical heterogeneity of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) phenotype including focal neurological deficits, it is important to look beyond mitochondrial gene mutation.
Methods
The clinical, histopathological, biochemical analysis for OXPHOS enzyme activity, and electron microscopic, and neuroimaging analysis was performed to diagnose 11 patients with MELAS syndrome with a multisystem presentation. In addition, whole exome sequencing (WES) and whole mitochondrial genome sequencing were performed to identify nuclear and mitochondrial mutations.
Results
Analysis of whole mtDNA sequence identified classical pathogenic mutation m.3243A > G in seven out of 11 patients. Exome sequencing identified pathogenic mutation in several nuclear genes associated with mitochondrial encephalopathy, sensorineural hearing loss, diabetes, epilepsy, seizure and cardiomyopathy (POLG, DGUOK, SUCLG2, TRNT1, LOXHD1, KCNQ1, KCNQ2, NEUROD1, MYH7) that may contribute to classical mitochondrial disease phenotype alone or in combination with m.3243A > G mutation.
Conclusion
Individuals with MELAS exhibit clinical phenotypes with varying degree of severity affecting multiple systems including auditory, visual, cardiovascular, endocrine, and nervous system. This is the first report to show that nuclear genetic factors influence the clinical outcomes/manifestations of MELAS subjects alone or in combination with m.3243A > G mutation.
Background:Human variations related to immune response and disease susceptibility is well-documented in Ayurveda. Prakriti (body constitution) is the basic constitution of an individual established at the time of birth and distinguishes variations, into three broad phenotype categories such as vata, pitta and kapha. Variation in immune response is often attributed to and measured from the difference in cluster differentiation (CD) markers expressed in lymphocytes. Currently, there are no reports available on the expression of CD markers related to prakriti.Objective:This is a pilot study performed to evaluate a panel of lymphocyte subset CD markers in dominant prakriti individuals.Materials and Methods:Immunophenotyping was carried out using whole blood from a total of healthy 222 subjects, who are grouped into kapha (n = 95), pitta (n = 57) and vata (n = 70) prakritis. CD markers such as CD3, CD4, CD8, CD14, CD25, CD56, CD69, CD71 and HLA-DR were analyzed using flow cytometry method. Differences between groups were analyzed using one-way ANOVA or Kruskal-Wallis analysis of variance (ANOVA) and multiple comparisons between groups were performed by Bonferroni or Mann-Whitney U test with corrections for type I error respectively. Significance was evaluated by ANOVA and Pearson's correlation.Results:We observed a significant difference (P < 0.05) in the expression of CD markers such as CD14 (monocytes), CD25 (activated B cells) and CD56 (Natural killer cells) between different prakriti groups. CD25 and CD56 expression was significantly higher in kapha prakriti samples than other prakriti groups. Similarly, slightly higher levels of CD14 were observed in pitta prakriti samples.Conclusion:Significant difference in the expression of CD14, CD25 and CD56 markers between three different prakriti is demonstrated. The increased level of CD25 and CD56 in kapha prakriti may indicate ability to elicit better immune response, which is in conformity with textual references in Ayurveda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.