Abstract:The Xinjiang Region in Northwest China is known as the "dust center" of the Eurasian mainland. Dust on the leaf surface affects overall plant development. While emphasis was on studying the impacts of industrial dust particles on crop development, the effect of natural dust deposition on the physiological parameters of cotton had not been studied before. The objective of this study was to examine the effects of dust deposits on cotton leaves and to estimate their impact on crop development and yield. For this purpose, an experiment was set up having two treatments and a control. In Treatment 1, cotton leaves were cleaned with water at three-day intervals or after a natural dust fall. In Treatment 2, 100 g·m −2 of dust was applied at 10-day intervals. The control received neither additional dust nor cleaning. In all of the treatments, stomatal conductance, leaf temperature, biomass and yield were measured. The results show a 28% reduction in yield and 30% reduction in OPEN ACCESSWater 2015, 7 117 stomatal conductance of the dust treatment compared to the control treatment. This indicates blocking of the stomata on the top of the leaf surface. In addition, the canopy temperature of the dust-applied leaves was always higher than the control and treatment.
The use of thermography as a means of crop water status estimation is based on the assumption that a sufficient amount of soil moisture enables plants to transpire at potential rates resulting in cooler canopy than the surrounding air temperature. The same principle is applied in this study where the crop transpiration changes occur because of the fungal infection. The field experiment was conducted where 25 wheat genotypes were infected with Zymoseptoria tritici. The focus of this study was to predict the onset of the disease before the visual symptoms appeared on the plants. The results showed an early significant increase in the maximum temperature difference within the canopy from 1 to 7 days after inoculation (DAI). Biotic stress associated with increasing level of disease can be seen in the increasing average canopy temperature (ACT) and maximum temperature difference (MTD) and decreasing canopy temperature depression (CTD). However, only MTD (p ≤ 0.01) and CTD (p ≤ 0.05) parameters were significantly related to the disease level and can be used to predict the onset of fungal infection on wheat. The potential of thermography as a non-invasive high throughput phenotyping technique for early fungal disease detection in wheat was evident in this study.
Abstract:Winter irrigation is one of the water and salt management practices widely adopted in arid irrigated areas in the Tarim Basin located in the Xinjiang Uygur Autonomous Region in the People's Republic of China. A winter irrigation study was carried out from November 2013 to March 2014 in Korla City. A cotton field was divided into 18 plots with a size of 3 mˆ3 m and five winter irrigation treatments (1200 m 3 /ha, 1800 m 3 /ha, 2400 m 3 /ha, 3000 m 3 /ha, and 3600 m 3 /ha) and one non-irrigation as a control were designed. The results showed that the higher winter irrigation volumes allowed the significant short-term difference after the irrigation in the fields with the higher soil moisture content. Therefore, the soil moisture in the next sowing season could be maintained at the level which was slightly lower than field capacity and four times that in the non-irrigation treatment. The desalination effect of winter irrigation increased with the increase of water irrigation volume, but its efficiency decreased with the increase of water irrigation volume. The desalination effect was characterized by short-term desalination, long-term salt accumulation, and the time-dependent gradually decreasing trend. During the winter irrigation period, air temperature was the most important external influencing factor of the soil temperature. During the period of the decrease in winter temperatures from December to January, soil temperature in the 5-cm depth showed no significant difference in all the treatments and the control. However, during the period of rising temperatures from January to March, soil temperature in the control increased significantly, faster than that in all treatments. Under the same irrigation volume, the temperature difference between the upper soil layer and the lower soil layer increased during the temperature drop period and decreased during the temperature rise period. In this paper, we proposed the proper winter irrigation volume of 1800-3000 m 3 /ha and suggested that the irrigation timing should be delayed to early December or performed in several stages in the fields with the drainage system. Under the current strict water management and fixed water supply quota situation, the methods are of great practical significance.
Late detection of fungal infection is the main cause of inadequate disease control, affecting fruit quality and reducing yield of grapevine. Therefore, infrared imagery as a remote sensing technique was investigated in this study as a potential tool for early disease detection. Experiments were conducted under field conditions, and the effects of temporal and spatial variability in the leaf temperature of grapevine infected by Plasmopara viticola were studied. Evidence of the grapevine’s thermal response is a 3.2 °C increase in leaf temperature that occurred long before visible symptoms appeared. In our study, a correlation of R2 = 0.76 at high significance level (p ≤ 0.001) was found between disease severity and MTD. Since the pathogen attack alters plant metabolic activities and stomatal conductance, the sensitivity of leaf temperature to leaf transpiration is high and can be used to monitor irregularities in temperature at an early stage of pathogen development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.