Cardiovascular complications are one of the major factors for early mortality in the present worldwide scenario and have become a major challenge in both developing and developed nations. It has thus become of immense importance to look for different therapeutic possibilities and treatments for the growing burden of cardiovascular diseases. Recent advancements in research have opened various means for better understanding of the complication and treatment of the disease. Adenosine receptors have become tool of choice in understanding the signaling mechanism which might lead to the cardiovascular complications. Adenosine A3 receptor is one of the important receptor which is extensively studied as a therapeutic target in cardiovascular disorder. Recent studies have shown that A3AR is involved in the amelioration of cardiovascular complications by altering the expression of A3AR. This review focuses towards the therapeutic potential of A3AR involved in cardiovascular disease and it might help in better understanding of mechanism by which this receptor may prove useful in improving the complications arising due to various cardiovascular diseases. Understanding of A3AR signaling may also help to develop newer agonists and antagonists which might be prove helpful in the treatment of cardiovascular disorder.
Diabetes mellitus categorized as type I and II, is a disease of pancreatic insulin, affecting blood glucose level in the body. Recent evidence suggests that cardiac diseases such as hypertension, coronary artery disease, congestive heart failure, and diabetic cardiomyopathy are associated with diabetes and hyperglycemia. The adenosine receptors (AR) have been reported to play an important role in the regulation of these diseases. Four adenosine receptors have been cloned and characterized from several different mammalian species. The receptors are named adenosine A(1), A(2A), A(2B), and A(3). The A(2A) and A(2B) receptors preferably interact with members of the Gs family of G proteins and the A(1) and A(3) receptors with Gi/o proteins. The ubiquitous levels of adenosine are found in each cell in normal conditions but in disease conditions its level has been shown to increase and activate G-protein mediated signaling pathway leading to artery constriction in cardiovascular diseases and diabetes. Various studies have demonstrated that A(3)AR is a potent cardioprotectant during myocardial ischemeia/ischemic reperfusion. Role of A(3)AR receptor as a possible cardioprotectant in diabetes is under investigation and studies have verified the involvement of cyclooxygenases (COXs) and NADPH oxidase pathways. This review summarizes the possible role of A(3)AR in cardiovascular disease and discusses advancement in the development of therapeutic agents targeting cardioprotection with discussion on recent patents on A(3) agonists that are being utilized in the clinical setting. We anticipate that detailed pharmacological studies of adenosine A(3) receptors could help in understanding the link between cardiovascular disease and diabetes and this can be utilized to develop newer therapies that selectively target A(3) receptor to overcome cardiac challenges.
Vascular dysfunction importantly contributes to mortality and morbidity in various cardiac and metabolic diseases. Among endogenous molecules regulating vascular tone is adenosine, with the adenosine A3 receptor (A3AR) exerting cardioprotective properties in ischemia and reperfusion. However, overexpression of A3AR is suggested to result in vascular dysfunction and inflammation. The leukocyte enzyme myeloperoxidase (MPO) is an important modulator of vascular function with nitric oxide-consuming and proinflammatory properties. Increased MPO plasma levels are observed in patients with cardiovascular disorders like heart failure, acute coronary syndromes, and arrhythmias. Given that vascular dysfunction and inflammation are also hallmarks of diabetes, the role of MPO in adenosine-dependent vasomotor function was investigated in a murine model of diabetes mellitus. Wild-type (WT) and MPO-deficient (Mpo) mice were treated with Streptozotocin (STZ), which induced an increase of MPO plasma levels in WT mice and led to enhanced aortic superoxide generation as assessed by dihydroethidium staining in STZ-treated WT mice as compared with controls. The vasoconstriction of aortic segments in response to the A3AR agonist Cl-IB-MECA (2-Chloro-N6-(3-iodobenzyl)-N-methyl-5-carbamoyladenosine) as determined by isometric force measurements was augmented in diabetic WT as compared with diabetic Mpo mice. Moreover, A3AR protein expression was enhanced in STZ-treated mice but was attenuated by MPO deficiency. The current data reveal an MPO-mediated increase of vascular A3AR expression under diabetic conditions, which leads to enhanced vasoconstriction in response to A3AR agonists and discloses an additional mechanism of MPO-mediated vascular dysfunction.
Extracellular purine nucleotides and nucleosides released from activated or injured cells influence multiple aspects of cardiac physiology and pathophysiology. Ectonucleoside triphosphate diphosphohydrolase-1 (CD39) hydrolyzes released nucleotides and thereby regulates the magnitude and duration of purinergic signaling. However, the impact of CD39 activity on post-myocardial infarction (MI) remodeling is incompletely understood. We measured the levels and activity of ecto-nucleotidases in human left ventricular samples from control and ischemic cardiomyopathy (ICM) hearts and examined the impact of ablation of Cd39 expression on post-myocardial infarction remodeling in mice. We found that human CD39 levels and activity are significantly decreased in ICM hearts (n=5) compared to Control hearts (n=5). In mice null for Cd39, cardiac function and remodeling are significantly compromised in Cd39-/- mice following myocardial infarction. Fibrotic markers including plasminogen activator inhibitor-1 (PAI-1) expression, fibrin deposition, alpha-smooth muscle actin (aSMA) and collagen expression are increased in Cd39-/- hearts. Importantly we found that transforming growth factor beta-1 (TGF-β1) stimulates ATP release and induces Cd39 expression and activity on cardiac fibroblasts, constituting an autocrine regulatory pathway not previously appreciated. Absence of CD39 activity on cardiac fibroblasts exacerbates TGF-β1 pro-fibrotic responses. Treatment with exogenous ectonucleotidase rescues this pro-fibrotic response in Cd39-/- fibroblasts. Together, these data demonstrate that CD39 has important interactions with TGF-β1-stimulated autocrine purinergic signaling in cardiac fibroblasts and dictates outcomes of cardiac remodeling following myocardial infarction. Our results reveal that ENTPD1 (CD39) regulates TGF-β1-mediated fibroblast activation and limits adverse cardiac remodeling following myocardial infarction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.