When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42±3 μas, which is circular and encompasses a central depression in brightness with a flux ratio 10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M=(6.5±0.7)×10 9 M e . Our radiowave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.
We search for an isotropic stochastic gravitational-wave background (GWB) in the 12.5 yr pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. Our analysis finds strong evidence of a stochastic process, modeled as a power law, with common amplitude and spectral slope across pulsars. Under our fiducial model, the Bayesian posterior of the amplitude for an f −2/3 power-law spectrum, expressed as the characteristic GW strain, has median 1.92 × 10−15 and 5%–95% quantiles of 1.37–2.67 × 10−15 at a reference frequency of f yr = 1 yr − 1 ; the Bayes factor in favor of the common-spectrum process versus independent red-noise processes in each pulsar exceeds 10,000. However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with general relativity. We find that the process has neither monopolar nor dipolar correlations, which may arise from, for example, reference clock or solar system ephemeris systematics, respectively. The amplitude posterior has significant support above previously reported upper limits; we explain this in terms of the Bayesian priors assumed for intrinsic pulsar red noise. We examine potential implications for the supermassive black hole binary population under the hypothesis that the signal is indeed astrophysical in nature.
Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances [1][2][3][4][5][6][7][8] . Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections 9 . The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events 10 . Here we report the detection of ten additional bursts from the direction of FRB 121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst 4 . This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or shorter. While there may be multiple physical origins for the population of fast radio bursts, the repeat bursts with high dispersion measure and variable spectra specifically seen from FRB 121102 support models that propose an origin in a young, highly magnetised, extragalactic neutron star 11,12 .2 FRB 121102 was discovered 4 in the PALFA survey, a deep search of the Galactic plane at 1.4 GHz for radio pulsars and fast radio bursts (FRBs) using the 305-m William E. Gordon Telescope at the Arecibo Observatory and the 7-beam Arecibo L-band Feed Array (ALFA) 13,14 . The observed dispersion measure (DM) of the burst is roughly three times the maximum value expected along this line of sight in the NE2001 model 15 of Galactic electron density, i.e. β DM ≡ DM FRB /DM Gal Max ∼ 3, suggesting an extragalactic origin.Initial Arecibo follow-up observations were limited in both dwell time and sky coverage and resulted in no detection of additional bursts 4 . In 2015 May and June we carried out more extensive follow-up using Arecibo, covering a ∼ 9 radius with a grid of six ALFA pointings around the then-best sky position of FRB 121102 (Figure 1 and Extended Data Table 1 and 2). As described in the Methods, high-time-resolution, total intensity spectra were recorded, and the data were processed using standard radio-frequency interference (RFI) excision, dispersion removal, and single-pulse-search algorithms implemented in the PRESTO software suite and associated data reduction pipelines 14,16,17 .We detected 10 additional bursts from FRB 121102 in these observations. The burst properties, and those of the initial FRB 121102 burst, are listed in Table 1. The burst intensities are shown in Figure 2. No other periodic or single-pulse signals of a plausible astrophysical origin were detected at any other DM. Until the source's physical nature is clear, we continue to refer to it as FRB 121102 and label each burst chronologically starting with the o...
The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p3×10 −4 ) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0 6-0 8) object displaying prominent Balmer and [O III] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m r′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter 4 kpc and a stellar mass of M * ∼(4-7)×107 M e , assuming a mass-to-light ratio between 2 to 3 M e L e −1 . Based on the Hα flux, we estimate the star formation rate of the host to be 0.4 M e yr −1 and a substantial host dispersion measure (DM) depth 324 pc cm −3 . The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102's location reported by Marcote et al. is offset from the galaxy's center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.
Fast radio bursts 1,2 are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients 3 . So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources 4 or the presence of peculiar field stars 5 or galaxies 4 . These attempts have not resulted in an unambiguous association 6,7 with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source 8-11 , using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with nonthermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts 12,13 and tidal disruption events 14 . However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.The repetition of bursts from FRB 121102 9,10 enabled a targeted interferometric localization campaign with the Karl G. Jansky Very Large Array (VLA) in concert with single-dish observations using the 305-m William E. Gordon Telescope at the Arecibo Observatory. We searched for bursts in VLA data with 5-ms sampling using both beam-forming and imaging techniques 15 (see Methods). In over 83 h of VLA observations distributed over six months, we detected nine bursts from FRB 121102 in the 2.5-3.5-GHz band with signalto-noise ratios ranging from 10 to 150, all at a consistent sky position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.