Recently, with the increased number of robots entering numerous manufacturing fields, a considerable wealth of literature has appeared on the theme of physical human-robot interaction using data from proprioceptive sensors (motor or/and load side encoders). Most of the studies have then the accurate dynamic model of a robot for granted. In practice, however, model identification and observer design proceeds collision detection. To the best of our knowledge, no previous study has systematically investigated each aspect underlying physical human-robot interaction and the relationship between those aspects. In this paper, we bridge this gap by first reviewing the literature on model identification, disturbance estimation and collision detection, and discussing the relationship between the three, then by examining the practical sides of model-based collision detection on a case study conducted on UR10e. We show that the model identification step is critical for accurate collision detection, while the choice of the observer should be mostly based on computation time and the simplicity and flexibility of tuning. It is hoped that this study can serve as a roadmap to equip industrial robots with basic physical human-robot interaction capabilities.
Статья посвящена обсуждению одного из результатов Г. А. Леонова по исследованию устойчивости по Жуковскому решения нелинейного дифференциального уравнения при помощи оригинального метода вывода линеаризации трансверсальной динамики. Показано, что предложенный Леоновым метод может быть эффектно использован как в решении задачи синтеза обратной связи для управления движением механической системы, так и в анализе поведения замкнутой системы. Ключевые слова: подвижное сечение Пуанкаре, устойчивость по Жуковскому, трансверсальная линеаризация.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.