The refined Chern-Simons theory is a one-parameter deformation of the ordinary Chern-Simons theory on Seifert manifolds. It is defined via an index of the theory on N M5 branes, where the corresponding one-parameter deformation is a natural deformation of the geometric background. Analogously with the unrefined case, the solution of refined Chern-Simons theory is given in terms of S and T matrices, which are the proper Macdonald deformations of the usual ones. This provides a direct way to compute refined Chern-Simons invariants of a wide class of three-manifolds and knots. The knot invariants of refined Chern-Simons theory are conjectured to coincide with the knot superpolynomials -Poincare polynomials of the triply graded knot homology theory. This conjecture is checked for a large number of torus knots in S 3 , colored by the fundamental representation. This is a short, expository version of arXiv:1105.5117, with some new results included. 1 1 Based on talks presented by M.A. at several conferences and workshops, including String-Math 2011 Conference at U. of Pennsilvania.
Macdonald processes are probability measures on sequences of partitions defined in terms of nonnegative specializations of the Macdonald symmetric functions and two Macdonald parameters q, t ∈ [0, 1). We prove several results about these processes, which include the following.(1) We explicitly evaluate expectations of a rich family of observables for these processes. (2) In the case t = 0, we find a Fredholm determinant formula for a q-Laplace transform of the distribution of the last part of the Macdonald-random partition. (3) We introduce Markov dynamics that preserve the class of Macdonald processes and lead to new "integrable" 2d and 1d interacting particle systems. (4) In a large time limit transition, and as q goes to 1, the particles of these systems crystallize on a lattice, and fluctuations around the lattice converge to O'Connell's Whittaker process that describe semi-discrete Brownian directed polymers.
AGT correspondence relates a class of 4d gauge theories in four dimensions to conformal blocks of Liouville CFT. There is a simple proof of the correspondence when the conformal blocks admit a free field representation. In those cases, vortex defects of the gauge theory play a crucial role, extending the correspondence to a triality. This makes use of a duality between 4d gauge theories in a certain background, and the theories on their vortices. The gauge/vortex duality is a physical realization of large N duality of topological string which was conjectured in [1] to provide an explanation for AGT correspondence. This paper is a review of [2], written for the special volume edited by J. Teschner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.