The development and implementation of vaccines have been growing exponentially, remaining one of the major successes of healthcare over the last century. Nowadays, active regular immunizations prevent epidemics of many viral diseases, including tick-borne encephalitis (TBE). Along with the generation of virus-specific antibodies, a highly effective vaccine should induce T cell responses providing long-term immune defense. In this study, we performed longitudinal high-throughput T cell receptor (TCR) sequencing to characterize changes in individual T cell repertoires of 11 donors immunized with an inactivated TBE vaccine. After two-step immunization, we found significant clonal expansion of both CD4+ and CD8+ T cells, ranging from 302 to 1706 vaccine-associated TCRβ clonotypes in different donors. We detected several waves of T cell clonal expansion generated by distinct groups of vaccine-responding clones. Both CD4+ and CD8+ vaccine-responding T cell clones formed 17 motifs in TCRβ sequences shared by donors with identical HLA alleles. Our results indicate that TBE vaccination leads to a robust T cell response due to the production of a variety of T cell clones with a memory phenotype, which recognize a large set of epitopes.
Retroelements (RE) have been proposed as important players in cancerogenesis. Different cancer types are characterized by a different level of tumor-specific RE insertions. In previous studies, small cohorts of hematological malignancies, such as acute myeloid leukemia, multiple myeloma, and chronic lymphocytic leukemia have been characterized by a low level of RE insertional activity. Acute lymphoblastic leukemia (ALL) in adults and childhood acute leukemias have not been studied in this context. We performed a search for new RE insertions (Alu and L1) in 44 childhood ALL, 14 childhood acute myeloid leukemia, and 14 adult ALL samples using a highly sensitive NGS-based approach. First, we evaluated the method sensitivity revealing the 1% detection threshold for the proportion of cells with specific RE insertion. Following this result, we did not identify new tumor-specific RE insertions in the tested cohort of acute leukemia samples at the established level of sensitivity. Additionally, we analyzed the transcription levels of active L1 copies and found them increased. Thus, the increased transcription of active L1 copies is not sufficient for overt elevation of L1 retrotranspositional activity in leukemia.
Background Retroelements (REs) occupy a significant part of all eukaryotic genomes including humans. The majority of retroelements in the human genome are inactive and unable to retrotranspose. Dozens of active copies are repressed in most normal tissues by various cellular mechanisms. These copies can become active in normal germline and brain tissues or in cancer, leading to new retroposition events. The consequences of such events and their role in normal cell functioning and carcinogenesis are not yet fully understood. If new insertions occur in a small portion of cells they can be found only with the use of specific methods based on RE enrichment and high-throughput sequencing. The downside of the high sensitivity of such methods is the presence of various artifacts imitating real insertions, which in many cases cannot be validated due to lack of the initial template DNA. For this reason, adequate assessment of rare (< 1%) subclonal cancer specific RE insertions is complicated. Results Here we describe a new copy-capture technique which we implemented in a method called SeqURE for Sequencing Unknown of Retroposition Events that allows for efficient and reliable identification of new genomic RE insertions. The method is based on the capture of copies of target molecules (copy-capture), selective amplification and sequencing of genomic regions adjacent to active RE insertions from both sides. Importantly, the template genomic DNA remains intact and can be used for validation experiments. In addition, we applied a novel system for testing method sensitivity and precisely showed the ability of the developed method to reliably detect insertions present in 1 out of 100 cells and a substantial portion of insertions present in 1 out of 1000 cells. Using advantages of the method we showed the absence of somatic Alu insertions in colorectal cancer samples bearing tumor-specific L1HS insertions. Conclusions This study presents the first description and implementation of the copy-capture technique and provides the first methodological basis for the quantitative assessment of RE insertions present in a small portion of cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.