The role of tryptophan-kynurenine metabolism in psychiatric disease is well established, but remains less explored in peripheral tissues. Exercise training activates kynurenine biotransformation in skeletal muscle, which protects from neuroinflammation and leads to peripheral kynurenic acid accumulation. Here we show that kynurenic acid increases energy utilization by activating G protein-coupled receptor Gpr35, which stimulates lipid metabolism, thermogenic, and anti-inflammatory gene expression in adipose tissue. This suppresses weight gain in animals fed a high-fat diet and improves glucose tolerance. Kynurenic acid and Gpr35 enhance Pgc-1α1 expression and cellular respiration, and increase the levels of Rgs14 in adipocytes, which leads to enhanced beta-adrenergic receptor signaling. Conversely, genetic deletion of Gpr35 causes progressive weight gain and glucose intolerance, and sensitizes to the effects of high-fat diets. Finally, exercise-induced adipose tissue browning is compromised in Gpr35 knockout animals. This work uncovers kynurenine metabolism as a pathway with therapeutic potential to control energy homeostasis.
The coactivator PGC-1α1 is activated by exercise training in skeletal muscle and promotes fatigue-resistance. In exercised muscle, PGC-1α1 enhances the expression of kynurenine aminotransferases (Kats), which convert kynurenine into kynurenic acid. This reduces kynurenine-associated neurotoxicity and generates glutamate as a byproduct. Here, we show that PGC-1α1 elevates aspartate and glutamate levels and increases the expression of glycolysis and malate-aspartate shuttle (MAS) genes. These interconnected processes improve energy utilization and transfer fuel-derived electrons to mitochondrial respiration. This PGC-1α1-dependent mechanism allows trained muscle to use kynurenine metabolism to increase the bioenergetic efficiency of glucose oxidation. Kat inhibition with carbidopa impairs aspartate biosynthesis, mitochondrial respiration, and reduces exercise performance and muscle force in mice. Our findings show that PGC-1α1 activates the MAS in skeletal muscle, supported by kynurenine catabolism, as part of the adaptations to endurance exercise. This crosstalk between kynurenine metabolism and the MAS may have important physiological and clinical implications.
Objective Hypertrophic white adipose tissue (WAT) morphology is associated with insulin resistance and type 2 diabetes. The mechanisms governing hyperplastic versus hypertrophic WAT expansion are poorly understood. We assessed if epigenetic modifications in adipocytes are associated with hypertrophic adipose morphology. A subset of genes with differentially methylated CpG-sites (DMS) in the promoters was taken forward for functional evaluation. Methods The study included 126 women who underwent abdominal subcutaneous biopsy to determine adipose morphology. Global transcriptome profiling was performed on WAT from 113 of the women, and CpG methylome profiling on isolated adipocytes from 78 women. Small interfering RNAs (siRNA) knockdown in human mesenchymal stem cells (hMSCs) was used to assess influence of specific genes on lipid storage. Results A higher proportion of CpG-sites were methylated in hypertrophic compared to hyperplastic WAT. Methylation at 35,138 CpG-sites was found to correlate to adipose morphology. 2,102 of these CpG-sites were also differentially methylated in T2D; 98% showed directionally consistent change in methylation in WAT hypertrophy and T2D. We identified 2,508 DMS in 638 adipose morphology-associated genes where methylation correlated with gene expression. These genes were over-represented in gene sets relevant to WAT hypertrophy, such as insulin resistance, lipolysis, extracellular matrix organization, and innate immunity. siRNA knockdown of ADH1B, AZGP1, C14orf180, GYG2, HADH, PRKAR2B , PFKFB3 , and AQP7 influenced lipid storage and metabolism. Conclusion CpG methylation could be influential in determining adipose morphology and thereby constitute a novel antidiabetic target. We identified C14orf180 as a novel regulator of adipocyte lipid storage and possibly differentiation.
Obesity ultimately results from an imbalance between energy intake and expenditure. However, in addition to their bioenergetic value, nutrients and their metabolites can function as important signalling molecules in energy homeostasis. Indeed, macronutrients and their metabolites can be direct regulators of metabolism through their actions on different organs. In turn, target organs can decide to use, store or transform the incoming nutrients depending on their physiological context and in coordination with other cell types. Tryptophan-kynurenine metabolites are an example of a family of compounds that can serve as systemic integrators of energy metabolism by signalling to different cell types. These include adipocytes, immune cells and muscle fibres, in addition to the well-known effects of kynurenine metabolites on the central nervous system. In the context of energy metabolism, several of the effects elicited by kynurenic acid are mediated by the G-protein-coupled receptor, GPR35. As GPR35 is expressed in tissues such as the adipose tissue, immune cells and the gastrointestinal tract, this receptor could be a potential therapeutic target for the treatment of obesity, diabetes and other metabolic diseases. In addition, metabolic disorders often coincide with states of chronic inflammation, which further highlights GPR35 as an integration node in conditions where inflammation skews metabolism. Defining the molecular interplay between different tissues in the regulation of energy homeostasis can help us understand interindividual variability in the response to nutrient intake and develop safe and efficient therapies to fight obesity and metabolic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.