The transition from sucking to chewing during postnatal development is accompanied by changes in masticatory muscle activity patterns. We previously demonstrated that changes in numerous parameters of chemical synapses among neurons, and intrinsic membrane properties of neurons, comprising brainstem oral-motor circuits are coincident with changes in masticatory muscle activity patterns. Considering recent findings that implicate a role for gap junctions in early locomotor and respiratory behaviors, our present study focuses on the developmental regulation of connexin proteins in trigeminal neurons as a first step in understanding a role for gap junctions in developing oral-motor circuits used for ingestive behaviors. We conducted immunohistochemistry studies to examine connexin (Cx) 26, 32, 36, and 43 expression in trigeminal motor and mesencephalic trigeminal nuclei during postnatal development at the light and electron microscopic levels. Postnatal days (P) 1, 6, 14, 21, and adult mice were used. Cx32, 36, and 43 expression was developmentally regulated in the trigeminal motor nucleus, while Cx26 expression remained high throughout postnatal development. In the mesencephalic trigeminal nucleus, Cx26, 32, and 43 expression was intense throughout development, with only Cx36 showing a developmental regulation. Ultrastructural examination of neonatal trigeminal motoneurons and mesencephalic trigeminal neurons revealed connexin expression in cell membranes, cytoplasm, and cell nuclei (Cx43, Cx32). Our results show that connexin proteins are differentially regulated between trigeminal motoneurons and mesencephalic trigeminal neurons during development, and suggest a possible role for gap junctions in the development of trigeminal neurons and the function and maturation of oral-motor circuits.
Krox-20 is a C(2)H(2)-type zinc-finger transcription factor that plays an essential role in hindbrain development. The Krox-20 null mutation results in hindbrain anomalies that result in neonatal death due to respiratory and feeding deficits. Here we review our studies of how the Krox- 20 null mutation impacts the development of motor and sensory systems critical for the production of consummatory behaviors (suckling/chewing). First, we demonstrated that Krox-20 null mutants suffer a selective loss of primary jaw-opening muscles during prenatal development. In vivo and in vitro studies are reviewed that highlight intrinsic defects in mutant jaw-opener muscles that contribute to muscle degeneration. Next we focus on the impact of the mutation on proprioceptive neurons activated during consummatory behaviors. Mesencephalic trigeminal (Me5) neurons are primary sensory neurons that relay jaw proprioception to the central nervous system. These cells are unique because their cell bodies are located in the central as opposed to the peripheral nervous system. Data are reviewed that demonstrate the impact of the mutation on Me5 neurons, a cell group traditionally thought to emerge from the mesencephalon. We show that Krox-20 null mutants have twice as many Me5 neurons relative to wildtypes at E15, but by birth have half the number of Me5 cells as wildtypes. TUNEL assays performed in each set of studies reveal that Krox-20 expression acts to protect both muscle and mesencephalic trigeminal neurons against apoptosis, suggesting that Krox-20, in addition to its role in hindbrain patterning, has a broader, long-lasting role in development.
Krox-20, a C2H2-type zinc-finger transcription factor, plays an important role in rhombomere development. This study reveals that the Krox-20 null mutation impacts the development of mesencephalic trigeminal (Me5) neurons, a cell group traditionally thought to emerge from the mesencephalon. Based on cell counting studies, we show that Krox-20 null mutants have twice as many Me5 neurons relative to wildtypes at E15, but by birth have half the number of Me5 cells as wildtypes. TUNEL studies reveal a period of increased apoptosis from E17-P0 in mutants. The mutation does not result in differences in Me5 cell size, morphology, gene expression or peripheral projection patterns between genotypes, as demonstrated by retrograde tracing and Brn3a immunohistochemistry. The data suggest that Krox-20 regulates the period and extent of Me5 apoptosis, impacting the final number of Me5 neurons. The loss of Me5 in Krox-20–/– mice may highlight species-specific differences in the origin of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.