Mycobacterium smegmatis strains that contain inactivated EmbA or EmbB proteins are unable to synthesize terminal Arabeta1-->2Araalpha1-->5(Arabeta1-->2Araalpha1-->3)Araalpha1-->5Araalpha1-->(Ara(6)) motif in the cell wall polysaccharide arabinogalactan. Instead, the mutants contain a linear Arabeta1-->2Araalpha1-->5Araalpha1-->5Araalpha1-->(Ara(4)) motif, suggesting that these proteins are involved in the synthesis or transfer of the disaccharide Arabeta1-->2Araalpha1--> to an internal 5-linked Ara. Therefore, we synthesized a linear Arabeta1-->2Araalpha1-->5Araalpha1-->5Araalpha1-->5Araalpha1--> with an octyl aglycon as an arabinosyl acceptor in cell-free assays. A facile assay was developed using the chemically synthesized glycan, membrane, and particulate cell wall as the enzyme source, and 5-phosphoribose diphosphate pR[(14)C]pp as the arabinose donor. The results unequivocally show that two arabinofuranosyl residues were added at the tertiary -->5Araalpha1--> of the synthetic glycan. This activity was undetectable in strains of M. smegmatis where embB or embA had been genetically disrupted. Normal activity could be restored only in the presence of both EmbA and EmbB proteins.
Commercially available Amberlyst-15 has played an important role in organic synthesis. This review summarizes the versatile synthetic applications of Amberlyst-15 in different chemical transformations. Reactions include esterification, transesterification, Michael addition, azaMichael addition, Prins cyclization, Friedel-Crafts alkylation, acylation, metal free hydroarylation, hydroalkylation, halogenation, protection of carbonyls, amines, deprotection of acetals, acetates, Boc-protected amines, cleavage of epoxides, crossed-aldol condensation, synthesis of quinolines, pyrazolines, indolinones, acridines, calix[4]pyrroles, xanthenes, coumarins, benzopyrans theaspirane, furans, and substituted phosphonates. Applications of this catalyst allow mild and highly selective transformations and synthesis in a facile and environmentally friendly manner. The catalysts can be regenerated and recycled.
Every minute, somewhere in the world four people die from tuberculosis (TB), yet it has been nearly 40 years since a novel drug was introduced to treat this disease. The ever increasing number of TB cases together with the advent of multi-drug resistant (MDR) TB, has stimulated the search for novel anti-TB agents. An array of novel drug targets is provided by the mycobacterial cell wall, whose integrity is essential for bacterial viability. Over the years researchers have identified potential drug targets that are associated with the synthesis of various cell wall constituents. This classic approach, together with the unravelling of the Mycobacterium tuberculosis genome sequence, has placed TB drug research in an unprecedented position. An entire new set of genetic and bioinformatic tools for probing potential drug targets is now available. As therapies using first-line drugs like isoniazid (INH) or rifampin in combination with second-line drugs, like ethambutol (EMB) still continues, a number of substituted fluoroquinolones are being considered as the new generation of anti-TB drugs for their favourable pharmacokinetic profile and excellent oral bioavailability. In this review, the future of anti-TB drugs is discussed with reflection on the structure and biosynthesis of cell wall constituents that are potential drug targets. The importance and relevance of the M. tuberculosis genome sequence for the development of novel anti-TB drugs, have also been underscored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.