Photoinduced living radical polymerization of acrylates, in the absence of conventional photoinitiators or dye sensitizers, has been realized in "daylight'"and is enhanced upon irradiation with UV radiation (λ(max) ≈ 360 nm). In the presence of low concentrations of copper(II) bromide and an aliphatic tertiary amine ligand (Me6-Tren; Tren = tris(2-aminoethyl)amine), near-quantitative monomer conversion (>95%) is obtained within 80 min, yielding poly(acrylates) with dispersities as low as 1.05 and excellent end group fidelity (>99%). The versatility of the technique is demonstrated by polymerization of methyl acrylate to a range of chain lengths (DP(n) = 25-800) and a number of (meth)acrylate monomers, including macromonomer poly(ethylene glycol) methyl ether acrylate (PEGA480), tert-butyl acrylate, and methyl methacrylate, as well as styrene. Moreover, hydroxyl- and vic-diol-functional initiators are compatible with the polymerization conditions, forming α,ω-heterofunctional poly(acrylates) with unparalleled efficiency and control. The control retained during polymerization is confirmed by MALDI-ToF-MS and exemplified by in situ chain extension upon sequential monomer addition, furnishing higher molecular weight polymers with an observed reduction in dispersity (Đ = 1.03). Similarly, efficient one-pot diblock copolymerization by sequential addition of ethylene glycol methyl ether acrylate and PEGA480 to a poly(methyl acrylate) macroinitiator without prior workup or purification is also reported. Minimal polymerization in the absence of light confers temporal control and alludes to potential application at one of the frontiers of materials chemistry whereby precise spatiotemporal "on/off" control and resolution is desirable.
Figure 1. Potential-energy surfaces for self-exchange electron transfer (red) relative to the excited states (black) based on the two-state Mulliken−Hush formulation. Reprinted with permission from ref 15.
For the first time SET-LRP of 1H,1H,2H,2H-perfluorooctyl acrylate, 2,2,3,3,4,4,4-heptafluorobutyl acrylate, 1H,1H,5H-octafluoropentyl acrylate and 1H,1H,5H-octafluoropentyl methacrylate in 2,2,2-trifluoroethanol as the solvent at 25 °C for acrylates and at 50 °C for methacrylate was accomplished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.