One of the most prevalent of waste materials is Polyethylene Terephthalate (PET) which is used mainly to produce the drinking water bottles. In this research, the waste plastic bottles, which are normally made from PET was used to investigate the possibility of using this material as an additive in asphalt concrete mixtures. Six different proportions (w/w %) of Degradated Polyethylene Terephthalate (DPET) (2, 4, 6, 8, 10, and 12%) have been added to bitumen to prepare the specimens. The tests include Marshall Method of mix design and coating with asphalt. The results indicated that the mixture property modification increased as the content of (DPET) increases. This additive gives maximum flexibility and rigidity of the asphalt, according to ductility and penetration tests. Marshall Method gives better resistance against permanent deformations and better engineering properties in terms of stability, flow value, air voids and water absorption comparing with non-modified mixtures.
PET (polyethylene terephthalate) is made up of polymerized repeating units of the ethylene terephthalate monomer (C10H8O4). PET is a recyclable plastic with the number 1 as its identification code. PET, which has a molecular weight of 192 gm/mole and contains 62.5 percent carbon, 33.3 percent oxygen, and 4.2 percent hydrogen, is utilized as synthetic fiber, polyester, plastic packaging, and soft drink containers all over the world. The main purpose of this study is to convert PET waste into liquid hydrocarbon fuel. Because PET use has risen significantly over the world, and the bulk of garbage is thrown into the soil rather than recycled, posing an environmental risk. During the heat breakdown phase, PET decomposes. It creates very strong and solid non-biodegradable terephthalic acid and benzoic acid complexes. To obtain liquid hydrocarbon fuel from PET, at 250-300℃, calcium hydroxide Ca(OH)2 is used as a catalyst in this study.
Chemical recycling of plastic water bottles by Depolymerization process. Improving the specifications of paints materials by polyethylene terephthalateRecycling consumed commercial polymers is considered a highly important issue that chemists and engineers must take care of to develop the proper recycling techniques. The main objective of this study is to find a radical solution to the problems of plastic waste by recycling plastic waste (water bottles) and studying the effect of the produced Degraded Polyethylene Terephthalate (DPET) on the properties of paints. DEPT was added in six quantities to the paint mixture (1, 3, 4, 5, 7, and 14 grams). The paints were evaluated using various tests, including scanning electron microscopy (SEM), viscosity, adhesion, brightness, color, ultraviolet reflectance, and accelerated weathering. Testing the paint mixtures showed that the samples were not affected by weather conditions. This indicates the improvement of the paint mixtures by adding quantities of DPET. This study concludes that the catalyst ratios used succeeded in cracking DPET and avoided the need for large quantities of the catalyst. The use of DPET in various material applications reduces the cost due to the low cost of DPET production. The use of PET in sustainable applications conferred a radical solution to plastic waste problems worldwide. In this work, mixing plastic waste products, after their treatment, in the preparation of paint mixtures successfully contributed to improving the required specifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.