The last decade has seen an increase in the use of artificial intelligence (AI) and machine learning (ML). Recent advances in the field of BC have led to renewed interest in the use of electroencephalography (EEG) for different fields. EEG is used in medical and biomedical applications such as analyzing mental workload and fatigue, diagnosing brain tumors and rehabilitation of central nervous system disorders; EEG-based motion analysis and classification is widely used in many areas from clinical applications to brain-machine interface and robotic applications. This article reviews the applications of many ML algorithms used in EEG signal processing, introduces commonly used algorithms, typical application scenarios, important advances and current problems. The study explored current applications of ML in EEG, including brain-computer interfaces, cognitive neuroscience, diagnosis of brain disorders, and more. First, the basic principles of ML algorithms used in EEG signal processing, including convolutional neural network, support vector machines, K-nearest neighbor and multidirectional convolutional neural network, are briefly explained. In addition, a general research on ML applications used in EEG analysis is presented. As a result, it was determined that the most SVM and CNN methods were used in the studies, and the study titles were mainly on epilepsy, BCI and Emotion, and the least on Alcohol, Sleeping States, Perception.
Anksiyete, üretkenliği ve yaşam kalitesini etkilediği kadar insan yeteneklerini ve davranışlarını da etkiler. Depresyon ve intiharın ana nedeni olarak kabul edilebilir. Günümüzde klinisyenler anksiyete bozukluklarını teşhis etmek için belirli kriterler kullanılmaktadır. Anksiyete tespitinin karmaşık görevini yerine getiren, invaziv olmayan güvenilir tekniklere ihtiyaç vardır. Bu çalışma, elektroensefalografi (EEG) sinyallerini analiz ederek ikili ve dörtlü sınıfları daha az EEG kanalı ve öznitelik sınıflandırmayı amaçlamıştır. 23 kişinin 14 kanallı EEG sinyalini içeren DASPS veri tabanı kullanılmıştır. EEGLAB kullanarak 14 kanaldan 4 kanal seçilmiştir. Öznitelik çıkarımı için dalgacık dönüşümü kullanılmıştır. MATLAB Classification learner toolbox’taki 8 yöntem ile sınıflandırma yapılmıştır. En yüksek doğrulukta başarımlar ikili sınıflandırmada %67,1 doğrulukta Karar ağaçları yönteminde, dörtlü sınıflandırmada %58,5 doğrulukta destek vektör makinesi ile elde edilmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.