Fuchsine acid is one of the supramolecular dyes used in Masson’s trichrome stain and has enormous applications in histology. It is also used in Van Gieson’s method with picric acid to show red collagen fibers and in Masson’s trichrome to show smooth muscle in contrast to collagen. In addition to these, it has several other important applications in electronic fields and photonic devices as an organic semiconductor. Therefore, it is of utmost importance to investigate and predict the complex molecular topology of fuchsine acid, which serves as a foundation for the link with its physicochemical properties. In this article, the supramolecular sheet of fuchsine acid is modeled topologically based on the edge partition, and closed formulae are derived for some of its important irregular molecular descriptors, with the ultimate object of throwing some light on the effectiveness of the computed molecular descriptors for QSAR and QSPR analyses.
New market trend for organic solar cell (OSC) require lightweight, cost effective, environmentally friendly and flexible. Transparent conductive electrode (TCE) is a main building block in organic solar cell in determining the device performance. Indium tin oxide (ITO) is widely used as transparent conductive material however it has major drawbacks due to relatively expensive, brittle and it limited to use on flexible substrate. This paper provides a short review of the transparent conductive electrode material which required for OSC applications. Issues related with existing TCE material such as ITO is also highlighted. Thus, alternative green material resources which offer low cost, environmentally friendly, mechanically robust and low sheet resistances are strongly required. Graphene is suitable candidate due to their outstanding properties such as good electrical, green material, chemical and thermally stable as well as remarkable mechanical strength and flexibility. The performance of transparent graphene electrode using low cost fabrication method which related with electrical, optical and power conversion efficiency was reviewed. We believed this work will provide beneficial input toward the improvement of OSC device performance.
The unsurpassed and exceptional properties of graphene (Gr) have prompted significant progress toward Gr-based applications, and have furthermore unleashed a host of complimentary two-dimensional materials that provide new, and emerging technologies synergistic with an already well-established Gr science. The Raman spectroscopy reveals both basic and advance features. It emerged as an important optical and structural characterization tool, following in the footsteps of related form of carbon. Till date, no comprehensive descriptions of Raman spectroscopy on Gr characterization have been published yet. This is to say that, no review can possibly complete. We have presented an extensive overview of the Raman spectroscopy, filled-up this gap and discussed the theoretical background associated with the Gr and other carbon-based materials, and some thoughts about the future of this field are highlighted. Thus, it would be used as a reference guide for the utilization of Raman spectroscopy to investigate the various features of Gr and carbon-based materials.
Energy production and storage are both issues with increasing demands for improved performance and the requirement for greener energy resources constitute immense research interest. Graphene, (Gr) has incurred intense interest since its free standing form was isolated in 2004. Gr has immense potential to be used for low-cost, flexible, and highly efficient organic solar cells (OSC) due to its excellent electron-transport properties and extremely high carrier mobility. Numerous Gr-based OSC have been reported, in which Gr serves as different parts of the cell. One of the reasons for the current interest in Gr is the great potential for transparent conductive electrode (i.e. anode or cathode) in OSC. Gr is an ideal two-dimensional material which can be assembled into film electrodes with good transparency, high conductivity, and low roughness. Besides the potential to act as a transparent conductive electrode, Gr also has other attractive properties for solar devices. For example, Gr has been incorporated into photo-active conjugated polymers to improve the excitons (e-/h+ pairs) dissociation and the charge-transport properties of the materials. Additionally, Gr also has potential to be used as an interfacial photo-active layer, since its band gap and band-position can be induced and tuned via chemical functionalization or by controlling the size of the Gr sheets. Although Gr is still a relatively new material it has already made a wide and diverse impact and this review will enlighten us towards using Gr as a novel material for future energy storage/generation applications.
The camphor-grown pristine carbon nanotubes (CNT) was annealed by a single-stage thermal annealing system through controlled ambient in air, argon and nitrogen, are reported. Field emission scanning electron microscopy images confirmed that the heat treatment process gives a place to re-ordering carbon nanostructures which involves: (i) an elimination of structural defects and (ii) better graphitization of the amorphous carbon phase without damaging CNT structure. The room temperature micro-Raman measurements showed that no significant changes on the D and G-line position. However, different annealing gas ambient could give different values degree of graphitization (ID/IG ratio) due to the nature of gas itself. It reveals that single-stage thermal annealing system is relatively simple and effective to obtain an ideal CNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.