Some life-threatening, foodborne, and zoonotic infections are transmitted through poultry birds. Inappropriate and indiscriminate use of antimicrobials in the livestock industry has led to an increased prevalence of multidrug-resistant bacteria with epidemic potential. Here, we present a functional molecular epidemiological analysis entailing the phenotypic and whole-genome sequence-based characterization of 11 H. pullorum isolates from broiler and free-range chickens sampled from retail wet markets in Hyderabad City, India. Antimicrobial susceptibility tests revealed all of the isolates to be resistant to multiple antibiotic classes such as fluoroquinolones, cephalosporins, sulfonamides, and macrolides. The isolates were also found to be extended-spectrum -lactamase producers and were even resistant to clavulanic acid. Whole-genome sequencing and comparative genomic analysis of these isolates revealed the presence of five or six well-characterized antimicrobial resistance genes, including those encoding a resistance-nodulation-division efflux pump(s). Phylogenetic analysis combined with pan-genome analysis revealed a remarkable degree of genetic diversity among the isolates from free-range chickens; in contrast, a high degree of genetic similarity was observed among broiler chicken isolates. Comparative genomic analysis of all publicly available H. pullorum genomes, including our isolates (n ϭ 16), together with the genomes of 17 other Helicobacter species, revealed a high number (8,560) of H. pullorum-specific protein-encoding genes, with an average of 535 such genes per isolate. In silico virulence screening identified 182 important virulence genes and also revealed high strain-specific gene content in isolates from free-range chickens (average, 34) compared to broiler chicken isolates. A significant prevalence of prophages (ranging from 1 to 9) and a significant presence of genomic islands (0 to 4) were observed in free-range and broiler chicken isolates. Taken together, these observations provide significant baseline data for functional molecular infection epidemiology of nonpyloric Helicobacter species such as H. pullorum by unraveling their evolution in chickens and their possible zoonotic transmission to humans.IMPORTANCE Globally, the poultry industry is expanding with an ever-growing consumer base for chicken meat. Given this, food-associated transmission of multidrugresistant bacteria represents an important health care issue. Our study involves a critical baseline approach directed at genome sequence-based epidemiology and transmission dynamics of H. pullorum, a poultry pathogen having established zoonotic potential. We believe our studies would facilitate the development of surveillance systems that ensure the safety of food for humans and guide public health
Helicobacter pylori is an important cause of chronic gastritis leading to peptic ulcer and is a major risk factor for gastric malignancies. Failure in the eradication of H. pylori infection and increasing antibiotic resistance are two major problems in preventing H. pylori colonization. Hence, a deeper understanding of the bacterial survival strategies is needed to tackle the increasing burden of H. pylori infection by an appropriate intervention. Our study demonstrated that the lack of cholesteryl glucosides (CGs) remarkably altered the morphology of H. pylori and increased permeability of the bacterial cell wall. Further, this study highlighted the substantial role of CGs in maintaining the typical H. pylori morphology that is essential for retaining its pathogenic potential. We also demonstrated that the loss of CGs in H. pylori renders the bacterium susceptible to different antibiotics.
The genotoxin colibactin is a secondary metabolite produced by the polyketide synthase (pks) island harbored by extraintestinal pathogenic E. coli (ExPEC) and other members of the Enterobacteriaceae that has been increasingly reported to have critical implications in human health. The present study entails a high-throughput whole-genome comparison and phylogenetic analysis of such pathogenic E. coli isolates to gain insights into the patterns of distribution, horizontal transmission, and evolution of the island. For the current study, 23 pks-positive ExPEC genomes were newly sequenced, and their virulome and resistome profiles indicated a preponderance of virulence encoding genes and a reduced number of genes for antimicrobial resistance. In addition, 4,090 E. coli genomes from the public domain were also analyzed for large-scale screening for pks-positive genomes, out of which a total of 530 pks-positive genomes were studied to understand the subtype-based distribution pattern(s). The pks island showed a significant association with the B2 phylogroup (82.2%) and a high prevalence in sequence type 73 (ST73; n = 179) and ST95 (n = 110) and the O6:H1 (n = 110) serotype. Maximum-likelihood (ML) phylogeny of the core genome and intergenic regions (IGRs) of the ST95 model data set, which was selected because it had both pks-positive and pks-negative genomes, displayed clustering in relation to their carriage of the pks island. Prevalence patterns of genes encoding RM systems in the pks-positive and pks-negative genomes were also analyzed to determine their potential role in pks island acquisition and the maintenance capability of the genomes. Further, the maximum-likelihood phylogeny based on the core genome and pks island sequences from 247 genomes with an intact pks island demonstrated horizontal gene transfer of the island across sequence types and serotypes, with few exceptions. This study vitally contributes to understanding of the lineages and subtypes that have a higher propensity to harbor the pks island-encoded genotoxin with possible clinical implications. IMPORTANCE Extraintestinal pathologies caused by highly virulent strains of E. coli amount to clinical implications with high morbidity and mortality rates. Pathogenic E. coli strains are evolving with the horizontal acquisition of mobile genetic elements, including pathogenicity islands such as the pks island, which produces the genotoxin colibactin, resulting in severe clinical outcomes, including colorectal cancer progression. The current study encompasses high-throughput comparative genomics and phylogenetic analyses to address the questions pertaining to the acquisition and evolution pattern of the genomic island in different E. coli subtypes. It is crucial to gain insights into the distribution, transfer, and maintenance of pathogenic islands, as they harbor multiple virulence genes involved in pathogenesis and clinical implications of the infection.
Background The burden of Helicobacter pylori-induced gastric cancer varies based on predominant H. pylori population in various geographical regions. Vietnam is a high H. pylori burden country with the highest age-standardized incidence rate of gastric cancer (16.3 cases/100,000 for both sexes) in Southeast Asia, despite this data on the H. pylori population is scanty. We examined the global context of the endemic H. pylori population in Vietnam and present a contextual and comparative genomics analysis of 83 H. pylori isolates from patients in Vietnam. Results There are at least two major H. pylori populations are circulating in symptomatic Vietnamese patients. The majority of the isolates (~ 80%, 66/83) belong to the hspEastAsia and the remaining belong to hpEurope population (~ 20%, 17/83). In total, 66 isolates (66/83) were cagA positive, 64 were hspEastAsia isolates and two were hpEurope isolates. Examination of the second repeat region revealed that most of the cagA genes were ABD type (63/66; 61 were hspEastAsia isolates and two were hpEurope isolates). The remaining three isolates (all from hspEastAsia isolates) were ABC or ABCC types. We also detected that 4.5% (3/66) cagA gene from hspEastAsia isolates contained EPIYA-like sequences, ESIYA at EPIYA-B segments. Analysis of the vacA allelic type revealed 98.8% (82/83) and 41% (34/83) of the strains harboured the s1 and m1 allelic variant, respectively; 34/83 carried both s1m1 alleles. The most frequent genotypes among the cagA positive isolates were vacA s1m1/cagA + and vacA s1m2/cagA + , accounting for 51.5% (34/66) and 48.5% (32/66) of the isolates, respectively. Conclusions There are two predominant lineages of H. pylori circulating in Vietnam; most of the isolates belong to the hspEastAsia population. The hpEurope population is further divided into two smaller clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.