The optimisation of New Zealand grown hemp fibre for inclusion in composites has been investigated. The optimum growing period was found to be 114 days, producing fibres with an average tensile strength of 857 MPa and a Young's modulus of 58 GPa. An alkali treatment with 10wt% NaOH solution at a maximum processing temperature of 160 o C with a hold time of 45 minutes was found to produce strong fibres with a low lignin content and good fibre separation. Although a good fit with the Weibull distribution function was obtained for single fibre strength, this did not allow for accurate scaling to strengths at different lengths. Alkali treated fibres, polypropylene and a maleated polypropylene (MAPP) coupling agent were compounded in a twin-screw extruder, and injection moulded into composite tensile test specimens. The strongest composite consisted of polypropylene with 40wt% fibre and 3wt% MAPP, and had a tensile strength of 47.2 MPa, and a Young's modulus of 4.88 GPa.
Biocomposites of poly(lactic acid) (PLA) and micrometre-sized graphite (GP) flake powder with 0-30 wt% GP contents have been prepared using extrusion moulding followed by compression moulding. The pure PLA and PLA-GP composites (PGC) have been examined by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy (RS), X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), transmission electron microscopy (TEM), mechanical and micromechanical testing, differential thermal analysis (DTA) and thermogravimetric analysis (TGA). FTIR spectra confirm the physical bond formation between GP and PLA. RS distinguishes the D-band spectra of pure PLA and PGC. XRD shows a partially crystalline structure in the PLA. SEM and TEM exhibit a clear dispersion of GP particles in PLA matrix at lower loading and aggregates at higher loading. With an increase of filler content, the tensile and flexural strengths decrease, but the Young's and tangent moduli are observed to increase by 58% and 77%, respectively. These increments represent an increase in the stiffness of the materials and are found to be consistent with the theoretical values. A decrease in microhardness with increase in filler content is also observed. Both the DTA and TGA reveal an increased thermal stability of the composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.