Motivation The coronavirus disease 2019 (COVID-19) caused by a new type of coronavirus has been emerging from China and led to thousands of death globally since December 2019. Despite many groups have engaged in studying the newly emerged virus and searching for the treatment of COVID-19, the understanding of the COVID-19 target-ligand interactions represents a key challenge. Herein, we introduce COVID-19 Docking Server, a web server that predicts the binding modes between COVID-19 targets and the ligands including small molecules, peptides and antibodies. Results Structures of proteins involved in the virus life cycle were collected or constructed based on the homologs of coronavirus, and prepared ready for docking. The meta platform provides a free and interactive tool for the prediction of COVID-19 target-ligand interactions and following drug discovery for COVID-19. Availability http://ncov.schanglab.org.cn Supplementary information Supplementary data are available at Bioinformatics online.
We present the results for CAPRI Round 46, the third joint CASP‐CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo‐oligomers and 6 heterocomplexes. Eight of the homo‐oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher‐order assemblies. These were more difficult to model, as their prediction mainly involved “ab‐initio” docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance “gap” was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template‐based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were
TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5′ end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.
Specific interactions between scaffold protein SH3 and multiple ankyrin repeat domains protein 3 (Shank3) and synapse-associated protein 90/postsynaptic density-95–associated protein (SAPAP) are essential for excitatory synapse development and plasticity. In a bunch of human neurological diseases, mutations on Shank3 or SAPAP are detected. To investigate the dynamical and thermodynamic properties of the specific binding between the N-terminal extended PDZ (Post-synaptic density-95/Discs large/Zonaoccludens-1) domain (N-PDZ) of Shank3 and the extended PDZ binding motif (E-PBM) of SAPAP, molecular dynamics simulation approaches were used to study the complex of N-PDZ with wild type and mutated E-PBM peptides. To compare with the experimental data, 974QTRL977 and 966IEIYI970 of E-PBM peptide were mutated to prolines to obtain the M4P and M5P system, respectively. Conformational analysis shows that the canonical PDZ domain is stable while the βN extension presents high flexibility in all systems, especially for M5P. The high flexibility of βN extension seems to set up a barrier for the non-specific binding in this area and provide the basis for specific molecular recognition between Shank3 and SAPAP. The wild type E-PBM tightly binds to N-PDZ during the simulation while loss of binding is observed in different segments of the mutated E-PBM peptides. Energy decomposition and hydrogen bonds analysis show that M4P mutations only disrupt the interactions with canonical PDZ domain, but the interactions with βN1′ remain. In M5P system, although the interactions with βN1′ are abolished, the binding between peptide and the canonical PDZ domain is not affected. The results indicate that the interactions in the two-binding site, the canonical PDZ domain and the βN1′ extension, contribute to the binding between E-PBM and N-PDZ independently. The binding free energies calculated by MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) are in agreement with the experimental binding affinities. Most of the residues on E-PBM contribute considerably favorable energies to the binding except A963 and D964 in the N-terminal. The study provides information to understand the molecular basis of specific binding between Shank3 and SAPAP, as well as clues for design of peptide inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.