IMPORTANCE Remdesivir demonstrated clinical benefit in a placebo-controlled trial in patients with severe coronavirus disease 2019 (COVID-19), but its effect in patients with moderate disease is unknown. OBJECTIVE To determine the efficacy of 5 or 10 days of remdesivir treatment compared with standard care on clinical status on day 11 after initiation of treatment. DESIGN, SETTING, AND PARTICIPANTS Randomized, open-label trial of hospitalized patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and moderate COVID-19 pneumonia (pulmonary infiltrates and room-air oxygen saturation >94%) enrolled from March 15 through April 18, 2020, at 105 hospitals in the United States, Europe, and Asia. The date of final follow-up was May 20, 2020. INTERVENTIONS Patients were randomized in a 1:1:1 ratio to receive a 10-day course of remdesivir (n = 197), a 5-day course of remdesivir (n = 199), or standard care (n = 200). Remdesivir was dosed intravenously at 200 mg on day 1 followed by 100 mg/d. MAIN OUTCOMES AND MEASURES The primary end point was clinical status on day 11 on a 7-point ordinal scale ranging from death (category 1) to discharged (category 7). Differences between remdesivir treatment groups and standard care were calculated using proportional odds models and expressed as odds ratios. An odds ratio greater than 1 indicates difference in clinical status distribution toward category 7 for the remdesivir group vs the standard care group. RESULTS Among 596 patients who were randomized, 584 began the study and received remdesivir or continued standard care (median age, 57 [interquartile range, 46-66] years; 227 [39%] women; 56% had cardiovascular disease, 42% hypertension, and 40% diabetes), and 533 (91%) completed the trial. Median length of treatment was 5 days for patients in the 5-day remdesivir group and 6 days for patients in the 10-day remdesivir group. On day 11, patients in the 5-day remdesivir group had statistically significantly higher odds of a better clinical status distribution than those receiving standard care (odds ratio, 1.65; 95% CI, 1.09-2.48; P = .02). The clinical status distribution on day 11 between the 10-day remdesivir and standard care groups was not significantly different (P = .18 by Wilcoxon rank sum test). By day 28, 9 patients had died: 2 (1%) in the 5-day remdesivir group, 3 (2%) in the 10-day remdesivir group, and 4 (2%) in the standard care group. Nausea (10% vs 3%), hypokalemia (6% vs 2%), and headache (5% vs 3%) were more frequent among remdesivir-treated patients compared with standard care. CONCLUSIONS AND RELEVANCE Among patients with moderate COVID-19, those randomized to a 10-day course of remdesivir did not have a statistically significant difference in clinical status compared with standard care at 11 days after initiation of treatment. Patients randomized to a 5-day course of remdesivir had a statistically significant difference in clinical status compared with standard care, but the difference was of uncertain clinical importance.
Nosocomial infections caused by antibiotic-resistant Klebsiella pneumoniae are emerging as a major health problem worldwide, while community-acquired K. pneumoniae infections present with a range of diverse clinical pictures in different geographic areas. In particular, an invasive form of K. pneumoniae that causes liver abscesses was first observed in Asia and then was found worldwide. We are interested in how differences in gene content of the same species result in different diseases. Thus, we sequenced the whole genome of K. pneumoniae NTUH-K2044, which was isolated from a patient with liver abscess and meningitis, and analyzed differences compared to strain MGH 78578, which was isolated from a patient with pneumonia. Six major types of differences were found in gene clusters that included an integrative and conjugative element, clusters involved in citrate fermentation, lipopolysaccharide synthesis, and capsular polysaccharide synthesis, phage-related insertions, and a cluster containing fimbria-related genes. We also conducted comparative genomic hybridization with 15 K. pneumoniae isolates obtained from community-acquired or nosocomial infections using tiling probes for the NTUH-K2044 genome. Hierarchical clustering revealed three major groups of genomic insertion-deletion patterns that correlate with the strains' clinical features, antimicrobial susceptibilities, and virulence phenotypes with mice. Here we report the whole-genome sequence of K. pneumoniae NTUH-K2044 and describe evidence showing significant genomic diversity and sequence acquisition among K. pneumoniae pathogenic strains. Our findings support the hypothesis that these factors are responsible for the changes that have occurred in the disease profile over time.
The operon containing magA is responsible for capsular serotype K1 of K. pneumoniae. Several loci in the operon are unique determinants of K1 strains.
Hypermucoviscous (HV) isolates of Klebsiella pneumoniae have been linked to virulence potential in experimental infections. We examined 33 isolates of K. pneumoniae from patients with bacteraemia for the HV phenotype on agar culture, and determined their virulence potential by screening for capsular (K) serotype by polymerase chain reaction and the presence of seven virulence factor genes. Fourteen (42·4%) isolates expressed the HV phenotype and 11 of these were serotype K1 or K2; these serotypes were not identified in HV-negative isolates. The genes rmpA, rmpA2, aerobactin, wabG and allS were significantly more frequent in HV than non-HV isolates. Multilocus sequence typing identified 21 sequence types (ST), eight of which were found in HV-positive isolates and the clonal relatedness of isolates of the most frequent types (ST23 and ST11) from different hospitals was confirmed by pulsed-field gel electrophoresis. The HV phenotype was more associated with community-acquired infection with a lower frequency of fatal underlying illness, but with significantly more focal infections, notably liver abscesses. Clinicians should be aware of such clinical impacts of the HV phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.