Botrytis cinerea is a primary pathogen causing stem and fruit rot during pre-and post-harvest. In the present study, the main purpose was to inquire into the antifungal activity and potential mechanisms of thymol and carvacrol against B. cinerea. During the experiment, the effects of thymol and carvacrol on physical and biochemical parameters of B. cinerea were evaluated. Results indicated that thymol and carvacrol exhibited strong antifungal activity against the targeted pathogen, with minimum inhibitory concentration and minimum fungicidal concentration of 65 mg/L and 100 mg/L for thymol, and 120 lL/L and 140 lL/L for carvacrol. Thymol and carvacrol changed obviously the morphology of B. cinerea hyphae by disrupting and distorting the mycelia through scanning electron microscopy. The membrane permeability of B. cinerea hyphae was prompted with the increment of two chemical agents' concentration, as evidenced by extracellular conductivity increase, the release of cell constituent, and the decrease of extracellular pH. Furthermore, a marked decline in total lipid content of B. cinerea cells was induced by the two chemical agents, suggesting that the cell membrane structures were destructed. Therefore, present results indicated that thymol and carvacrol may be used as a good alternative to conventional fungicides against B. cinerea in controlling grey molds in horticultural products.
The current COVID‐19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is an enormous threat to public health. The SARS‐CoV‐2 3C‐like protease (3CLpro), which is critical for viral replication and transcription, has been recognized as an ideal drug target. Herein, it is identified that three herbal compounds, Salvianolic acid A (SAA), (–)‐Epigallocatechin gallate (EGCG), and Oridonin, directly inhibit the activity of SARS‐CoV‐2 3CLpro. Further, blocking SARS‐CoV‐2 infectivity by Oridonin is confirmed in cell‐based experiments. By solving the crystal structure of 3CLpro in complex with Oridonin and comparing it to that of other ligands with 3CLpro, it is identified that Oridonin binds at the 3CLpro catalytic site by forming a C—S covalent bond, which is confirmed by mass spectrometry and kinetic study, blocking substrate binding through a nonpeptidomimetic covalent binding mode. Thus, Oridonin is a novel candidate to develop a new antiviral treatment for COVID‐19.
Oridonin Inhibits SARS‐CoV‐2 Oridonin, a natural product extracted from Rabdosia rubescens , possesses a wide range of pharmacological properties, including anti‐inflammatory, anti‐cancer, anti‐microbial, neuroprotection, immunoregulation, etc. In article number 2100124 , Baisen Zhong, Litao Sun, and co‐workers demonstrate that Oridonin targets the SARS‐CoV‐2 3CL protease by covalently binding to cysteine145 in its active pocket to exert an anti‐SARS‐CoV‐2 effect, which provides a novel candidate for the treatment of COVID‐19. Permissions: © 2022 WILEY‐VCH GmbH
The ability of Potentilla griffithii Hook var. velutina Cardot to hypaeraccumulate zinc (Zn) was identified through field survey and hydroponic experiments. Our results showed that P. griffithii could be classified as a new Zn hyperaccumulator. Zn concentrations in the shoots of P. griffithii averaged 6250 mg kg(-1) (3870-8530 mg kg(-1)) growing in Zn-rich soils. The highest Zn concentration was observed in the leaves of P. griffithii at 22,990 mg kg(-1). The fact that P. griffithii was able to grow in a mining soil with a Zn concentration of 193,000 mg kg(-1) without showing a major sign of phytotoxicity demonstrated its high tolerance to Zn. When growing in hydroponic systems, P. griffithii accumulated a maximum 26700 mg kg(-1) zinc concentration in the shoots, indicating the ability of this species to effectively take up and translocate Zn. Translocation factors (the ratio of Zn concentration in shoot to root) of 1.1 to 1.6 were obtained. Compared to the control, dry biomass of P. griffithii in 160 mg L(-1) Zn treatment increased 66.6% (P < 0.05). The time-course experiment showed that the maximum Zn concentration at 100 mg L(-1) Zn treatment was found at 16 d, much later than that of the 10 mg L(-1) Zn treatment, which might be an attribution of a accumulating mechanism or detoxification of a plant. The report of a new Zn hyperaccumulator provides a new plant species for the phytoremediation of contaminated soil and for the research on mechanisms of Zn hyperaccumulation in plants.
1‐Methylcyclopropene (1‐MCP, 1 μl/L) and 1 × minimum fungicidal concentration (MFC) citral alone and in combination were used to treat on postharvest tomato fruits to investigate their influence on disease incidence and postharvest quality during fruit storage, which were stored at 90%–95% relative humidity and 25 ± 2°C. Weight loss, pH, hue angle (Hue°), total soluble solid (TSS), ascorbic acid content, firmness and antioxidant enzyme activities were evaluated after each storage period. 1 μl/L 1‐MCP or 1 × MFC citral reduced weight loss, retarded peel colour changes and retained postharvest fruit quality. 1 μl/L 1‐MCP + 1 × MFC citral could better maintain firmness and ascorbic acid content and increase antioxidant enzyme activities, compared to other treatments. Disease incidence of tomato fruit was significantly decreased, and spore germination and mycelia growth of Botrytis cinerea were suppressed by the combined treatment with 1 μl/L 1‐MCP and 1 × MFC citral. These results indicate that the combined treatment could effectively delay postharvest tomato fruits senescence and inhibit postharvest pathogens in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.