Lung adenocarcinoma (LUAD) tumour tissue grows into variable morphological architecture called growth patterns (GPs). The GPs are clinically linked to the biological behaviour of the tumour. However, due to the complex heterogeneity of the tumours, there is high inter-and intra-observer variability in the pathologist reporting of GPs. This paper proposes a deep-learning model for automatically classifying the LUAD growth patterns in whole slide images (WSIs). The model is trained and tested on 78 cases of LUAD in the digitised WSI of the sample. For each case, all the growth patterns were automatically classified and quantified. Our multivariate analysis shows that lepidic and micropapillary patterns are independent predictors for five-year survival (p<0.05). The proposed model splits our study cohort into short-and long-term survival with p=0.009.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.