This paper takes the time series of short-term traffic flow as research object. The delay time and embedding dimension are calculated by CC algorithm, and the chaotic characteristics of the time series are verified by small data sets method.Then based on the neural network prediction model and the chaotic phase space reconstruction theory, the network topology is determined, and the prediction is conducted by the wavelet neural network and RBF neural network using Lan-Hai expressway experimental data. The results show that the prediction effect of RBF neural network is better. Due to the poor stability of the network caused by the initial parameters randomness, the genetic algorithm is used to optimize the initial parameters. The results show that the prediction error of the optimized wavelet neural network or RBF neural network is reduced by more than 10%, and prediction accuracy of the latter is better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.