Modified magnesium-aluminate spinels (MgAl2O4) were prepared by recrystallizing a mixture of MgAl2O4 and zeolite Y nanoclusters in acidic medium to improve the acidity of MgAl2O4, which was commonly used as a sulfur transfer agent in fluid catalytic cracking (FCC) units. The acidity and basicity of these samples can be tuned by varying the pH value of the synthesis system. From the characterization and catalytic cracking tests the introduction of zeolitic building units into the spinels contributed to the increased microporosity, acidity, and hydrothermal stability. The catalytic results indicate that the activities and the product selectivities of the modified spinels for vacuum gas oil (VGO) cracking improved remarkably compared to the parent spinel. These samples exhibited even better performance than Kaolin clay for VGO cracking while retaining a part of the basic sites for oxidative SO2 uptake. Moreover, the FCC catalyst prepared using the modified spinel as a partial matrix, after equilibration, also gave superior catalytic behavior compared to a reference FCC catalyst with Kaolin clay as the main matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.