Periodontitis is an inflammatory disease of the supporting tissues of the teeth induced by periodontopathic bacteria that results in the progressive destruction of periodontal tissues. Treatment of periodontitis is painful and time-consuming. Recently, herbal medicines have been considered for use in treating inflammation-related diseases, including periodontitis. Resveratrol and its derivative 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, have anti-inflammatory properties and other medical benefits. Here, we highlight the importance of resveratrol and its glycosylated derivative as possible complementary treatments for periodontitis and their potential for development as innovative therapeutic strategies. In addition, we present evidence and discuss the mechanisms of action of resveratrol and THSG on periodontitis, focusing on Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. We also illuminate the signal transduction pathways and the cytokines involved.
Diabetic nephropathy (DN) is one of the primary complications of diabetes. Fisetin is a flavonoid polyphenol that is present in several vegetables and fruits. The present study investigated the mechanisms of fisetin in DN-induced podocyte injury both in vitro and in vivo. The results revealed that fisetin ameliorated high glucose (HG)-induced podocyte injury and streptozotocin (STZ)-induced DN in mice. CDKN1B mRNA expression in the glomeruli of patients with DN decreased based on the Nephroseq dataset, and fisetin reversed CDKN1B expression at mRNA and protein levels in a dose-dependent manner in podocytes and mice kidney tissues. Furthermore, fisetin suppressed the phosphorylation of P70S6K, a downstream target of CDKN1B, activated autophagosome formation, and inhibited Nod-like receptor protein 3 (NLRP3) inflammasomes. Interfering CDKN1B reduced the protective effects of fisetin against high glucose-induced podocyte injury. Molecular docking results revealed a potential interaction between fisetin and CDKN1B. In summary, the present study revealed that fisetin alleviated high glucose-induced podocyte injury and STZ-induced DN in mice by restoring autophagy-mediated CDKN1B/P70S6K pathway and inhibiting NLRP3 inflammasome.
Diabetic nephropathy (DN) is one of the most severe microvascular complications of diabetes and has become the leading cause of end-stage renal disease formation. The pathogenesis of diabetic nephropathy is very complex and is still not fully understood. Fisetin is a flavonoid polyphenolic compound that is widely found in different fruits, vegetables, and medicinal plants. Many studies have indicated that it has a variety of pharmacological activities. In this study, we investigated the mechanism of action of fisetin in the protection of DN-induced podocyte injury both in vivo and in vitro. Results showed that fisetin could reduce high glucose (HG)-induced podocyte injury and streptozotocin (STZ)-induced diabetic nephropathy in mice. According to the histopathological staining results, fisetin ameliorated DN-induced glomerular injury in a dose-dependent manner. Western blot and immunofluorescence results showed that fisetin effectively promoted the expression of podocyte functional integrity marker proteins and inhibited the expression of podocyte injury marker proteins. In addition, according to the Western blot and RT-qPCR results, fisetin activates the nuclear translocation of Nrf2 to exert antioxidative stress ability and affects the expression of downstream antioxidant enzymes HO-1, GPX4, and other ferroptosis-related markers, thereby protecting against HG-induced podocyte ferroptosis and oxidative stress injury in DN mice. In summary, this study demonstrated that fisetin could enhance the antioxidative stress capacity of DN mice by promoting the activation of the Nrf2/HO-1/GPX4 signaling pathway in renal tissues, and attenuated HG-induced podocytes injury and STZ-induced DN in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.