Abstract-Touch sensing can help robots understand their surrounding environment, and in particular the objects they interact with. To this end, roboticists have, in the last few decades, developed several tactile sensing solutions, extensively reported in the literature. Research into interpreting the conveyed tactile information has also started to attract increasing attention in recent years. However, a comprehensive study on this topic is yet to be reported. In an effort to collect and summarize the major scientific achievements in the area, this survey extensively reviews current trends in robot tactile perception of object properties. Available tactile sensing technologies are briefly presented before an extensive review on tactile recognition of object properties. The object properties that are targeted by this review are shape, surface material and object pose. The role of touch sensing in combination with other sensing sources is also discussed. In this review, open issues are identified and future directions for applying tactile sensing in different tasks are suggested.
Using a tactile array sensor to recognize an object often requires multiple touches at different positions. This process is prone to move or rotate the object, which inevitably increases difficulty in object recognition. To cope with the unknown object movement, this paper proposes a new tactile-SIFT descriptor to extract features in view of gradients in the tactile image to represent objects, to allow the features being invariant to object translation and rotation. The tactile-SIFT segments a tactile image into overlapping subpatches, each of which is represented using a dn-dimensional gradient vector, similar to the classic SIFT descriptor. Tactile-SIFT descriptors obtained from multiple touches form a dictionary of k words, and the bagof-words method is then used to identify objects. The proposed method has been validated by classifying 18 real objects with data from an off-the-shelf tactile sensor. The parameters of the tactile-SIFT descriptor, including the dimension size dn and the number of subpatches sp, are studied. It is found that the optimal performance is obtained using an 8-D descriptor with three subpatches, taking both the classification accuracy and time efficiency into consideration. By employing tactile-SIFT, a recognition rate of 91.33% has been achieved with a dictionary size of 50 clusters using only 15 touches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.