The electron-beam welding (EBW) behaviors of pure Mg and the AZ31, AZ61, and AZ91 Mg alloys are examined in this study, in terms of fusion-zone characteristics, grain structures, texture evolution, and joint efficiency. With increasing A1 content, the Mg-based materials were found to be more easily fusion welded. The AZ91 alloy could be welded using a beam power of 2200 W and a weld speed of 16 mm/s, resulting in a weld depth of 29 mm with a fusion-zone aspect ratio of 8.2. The grains inside the fusion zone were nearly equiaxed in shape and ϳ10 m in size, due to the rapid cooling rate. Extended partial melting zones were observed in alloys with high solute contents, such as AZ61 and AZ91. The postweld tensile strength of the Mg alloys could recover back to ϳ80 to 110 pct of the original strength. The texture in the fusion zone was traced by X-ray diffraction (XRD) and electron-backscattered diffraction (EBSD). The grain orientations inside the rapidly solidified electron-beam-welded fusion zones are still rather diversely distributed. The a 1 -, a 2 -, and a 3 -axes of some grains tend to align at 90 or 30 deg with respect to welding direction, and the c-axis tends to align along the plate normal direction. The influence from surface tension on the weld top-surface appearance and weld depth was not pronounced for the current four Mg materials. Instead, differences in the solidus temperatures and thermal conductivity should be the primary factors.
Direct aluminium–stainless steel joints are difficult to create by the vaporized foil actuator welding (VFAW) method because brittle intermetallic compounds (IMCs) tend to form along the interface. The use of an interlayer as a transition layer between the two materials with vast difference in hardness and ductility was proposed as a solution to reduce the formation of the IMCs. In this work, VFAW was used to successfully weld sheet aluminium alloy 5A06 to stainless steel 321 with a 3003 aluminium alloy interlayer. Input energy levels of 6 kJ, 8 kJ, 10 kJ, and 12 kJ were used and as a trend, higher energy inputs resulted in higher impact velocities, larger weld area, and better mechanical properties. In lap-shear and peel testing, all samples failed at the interface of the interlayer and target. At 10 kJ energy input, flyer velocities up to 935 m/s, lap-shear peak load of 44 kN, and peel load of 2.15 kN were achieved. Microstructure characterization and element distribution were performed, and the results show a wavy pattern created between the flyer and interlayer which have similar properties, and the interface between the interlayer and target was dominated by element diffusion and IMCs identified mainly as FeAl3 and FeAl. The results demonstrate VFAW is a suitable joining method for dissimilar metals such as aluminium alloy and stainless steel, which has a broad and significant application prospect in aerospace and chemical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.