An approach using a convolutional neural network (CNN) is proposed for real-time gender classification based on facial images. The proposed CNN architecture exhibits a much reduced design complexity when compared with other CNN solutions applied in pattern recognition. The number of processing layers in the CNN is reduced to only four by fusing the convolutional and subsampling layers. Unlike in conventional CNNs, we replace the convolution operation with cross-correlation, hence reducing the computational load. The network is trained using a second-order backpropagation learning algorithm with annealed global learning rates. Performance evaluation of the proposed CNN solution is conducted on two publicly available face databases of SUMS and AT&T. We achieve classification accuracies of 98.75% and 99.38% on the SUMS and AT&T databases, respectively. The neural network is able to process and classify a 32 × 32 pixel face image in less than 0.27 ms, which corresponds to a very high throughput of over 3700 images per second. Training converges within less than 20 epochs. These results correspond to a superior classification performance, verifying that the proposed CNN is an effective real-time solution for gender recognition.
In this paper, we propose an e®ective convolutional neural network (CNN) model to the problem of face recognition. The proposed CNN architecture applies fused convolution/ subsampling layers that result in a simpler model with fewer network parameters; that is, a smaller number of neurons, trainable parameters, and connections. In addition, it does not require any complex or costly image preprocessing steps that are typical in existing face recognizer systems. In this work, we enhance the stochastic diagonal Levenberg-Marquardt algorithm, a second-order back-propagation algorithm to obtain faster network convergence and better generalization ability. Experimental work completed on the ORL database shows that a recognition accuracy of 100% is achieved, with the network converging within 15 epochs. The average processing time of the proposed CNN face recognition solution, executed on a 2.5 GHz Intel i5 quad-core processor, is 3 s per epoch, with a recognition speed of less than 0.003 s. These results show that the proposed CNN model is a computationally e±cient architecture that exhibits faster processing and learning times, and also produces higher recognition accuracy, outperforming other existing work on face recognizers based on neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.