Atmospheric new particle formation (NPF) is an important global phenomenon that is nevertheless sensitive to ambient conditions. According to both observation and theoretical arguments, NPF usually requires a relatively high sulfuric acid (HSO) concentration to promote the formation of new particles and a low preexisting aerosol loading to minimize the sink of new particles. We investigated NPF in Shanghai and were able to observe both precursor vapors (HSO) and initial clusters at a molecular level in a megacity. High NPF rates were observed to coincide with several familiar markers suggestive of HSO-dimethylamine (DMA)-water (HO) nucleation, including sulfuric acid dimers and HSO-DMA clusters. In a cluster kinetics simulation, the observed concentration of sulfuric acid was high enough to explain the particle growth to ~3 nanometers under the very high condensation sink, whereas the subsequent higher growth rate beyond this size is believed to result from the added contribution of condensing organic species. These findings will help in understanding urban NPF and its air quality and climate effects, as well as in formulating policies to mitigate secondary particle formation in China.
Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m−2) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes.
Abstract. Particle size distributions in the range of 1.34-615 nm were recorded from 25 November 2013 to 25 January 2014 in urban Shanghai, using a combination of one nano condensation nucleus counter system, one nano scanning mobility particle sizer (SMPS), and one long-SMPS. Measurements of sulfur dioxide by an SO 2 analyzer with pulsed UV fluorescence technique allowed calculation of sulfuric acid proxy. In addition, concentrations of ammonia were recorded with a differential optical absorption spectroscopy. During this 62-day campaign, 13 new particle formation (NPF) events were identified with strong bursts of sub-3 nm particles and subsequent fast growth of newly formed particles. The observed nucleation rate (J 1.34 ), formation rate of 3 nm particles (J 3 ), and condensation sink were 112.4-271.0 cm −3 s −1 , 2.3-19.2 cm −3 s −1 , and 0.030-0.10 s −1 , respectively. Subsequent cluster/nanoparticle growth (GR) showed a clear size dependence, with average values of GR 1.35∼1.39 , GR 1.39∼1.46 , GR 1.46∼1.70 , GR 1.70∼2.39 , GR 2.39∼7 , and GR 7∼20 being 1.6± 1.0, 1.4 ± 2.2, 7.2 ± 7.1, 9.0 ± 11.4, 10.9 ± 9.8, and 11.4 ± 9.7 nm h −1 , respectively. Correlation between nucleation rate (J 1.34 ) and sulfuric acid proxy indicates that nucleation rate J 1.34 was proportional to a 0.65±0.28 power of sulfuric acid proxy, indicating that the nucleation of particles can be explained by the activation theory. Correlation between nucleation rate (J 1.34 ) and gas-phase ammonia suggests that ammonia was associated with NPF events. The calculated sulfuric acid proxy was sufficient to explain the subsequent growth of 1.34-3 nm particles, but its contribution became smaller as the particle size grew. Qualitatively, NPF events in urban Shanghai likely occur on days with low levels of aerosol surface area, meaning the sulfuric acid proxy is only a valid predictor when aerosol surface area is low.
The electrical conductance of epitaxial Bi thin films grown on BaF(2)(111) by molecular beam epitaxy has been systematically investigated as a function of both film thickness (4-540 nm) and temperature (5-300 K). Unlike bulk Bi as a prototypical semimetal, the Bi thin films up to 90 nm are found to be insulating in the interior but metallic on the surface. This finding not only has unambiguously resolved the long-standing controversy about the existence of the semimetal-semiconductor transition in Bi thin films but also provided a straightforward interpretation for the perplexing temperature dependence of the resistivity of Bi thin films, which in turn might have some potential applications in spintronics.
Abstract. The measurement of sub-3 nm aerosol particles is technically challenging. Therefore, there is a lack of knowledge about the concentrations of atmospheric sub-3 nm particles and their variation in different environments. In this study, the concentrations of ∼ 1-3 nm particles measured with a particle size magnifier (PSM) were investigated at nine sites around the world. Sub-3 nm particle concentrations were highest at the sites with strong anthropogenic influence. In boreal forest, measured particle concentrations were clearly higher in summer than in winter, suggesting the importance of biogenic precursor vapors in this environment. At all sites, sub-3 nm particle concentrations had daytime maxima, which are likely linked to the photochemical production of precursor vapors and the emissions of precursor vapors or particles from different sources. When comparing ion concentrations to the total sub-3 nm particle concentrations, electrically neutral particles were observed to dominate in polluted environments and in boreal forest during spring and summer. Generally, the concentrations of sub-3 nm particles seem to be determined by the availability of precursor vapors rather than the level of the sink caused by preexisting aerosol particles. The results also indicate that the formation of the smallest particles and their subsequent growth to larger sizes are two separate processes, and therefore studying the concentration of sub-3 nm particles separately in different size ranges is essential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.