WEE1 homolog 2 (WEE2, also known as WEE1B) is a newly identified member of the WEE kinase family that is conserved from yeast to humans. The aim of the present study was to determine the spatiotemporal expression pattern and the function of WEE2 during oocyte maturation in a nonhuman primate species, the rhesus macaque. Among 11 macaque tissues examined, WEE2 transcript is predominantly expressed in the ovary and only weakly detectable in the testis. Within the ovary, WEE2 mRNA is exclusively localized in the oocyte and appears to accumulate during folliculogenesis, reaching the highest level in preovulatory follicles. Microinjection of a full-length WEE2-GFP (green fluorescent protein) fusion mRNA indicates a specific nuclear localization of WEE2 protein in both growing and fully grown germinal vesicle (GV)-intact oocytes. Taking the long double-stranded RNA-mediated RNA interference approach, we found that down-regulation of WEE2 led to meiotic resumption in a subset of GV oocytes even in the presence of a phosphodiesterase 3 inhibitor. On the other hand, overexpression of WEE2 delays the reentry of oocytes into meiosis in both mice and monkeys. These findings suggest that WEE2 is a conserved oocyte-specific meiosis inhibitor that functions downstream of cAMP in nonhuman primates.
Background The risk factors of postoperative delirium (POD), a serious while preventable complication, developed by patients undergoing knee and replacement surgery are still under investigation. In this systematic review and meta-analysis, we identified risk factors associated with POD in knee and hip replacement. Methods PubMed, Ovid MEDLINE, and Ovid EMBASE were used to identify original researches. The studies evaluating the risk factors of POD after knee and hip replacement were reviewed, and the qualities of the included studies were assessed with Newcastle–Ottawa Scale. Data were extracted, pooled, and a meta-analysis was completed Result Twenty-two studies were finally included with a total of 11934 patients who underwent knee or hip replacement and 1841 developed POD with an incidence of 17.6% (95% confidential interval (CI) 13.2–22.0%). Eighteen significant risk factors were identified including advanced age (odds ratio (OR) 1.15 95% CI 1.08–1.22), cognitive impairment (OR 6.84, 95% CI 3.27–14.33), history of cerebrovascular events (OR 2.51, 95% CI 1.28–4.91), knee replacement (OR 1.42, 95% CI 1.00–2.02), blood loss (standardized mean difference (SMD) 0.30, 95% CI 0.15–0.44), dementia (OR 3.09, 95% CI 2.10–4.56), neurologic disorders (OR 2.26, 95% CI 1.23–4.15), psychiatric illness (OR 2.74, 95% CI 1.34–5.62), and obstructive sleep apnea (OR 4.17, 95% CI 1.72–10.09) along with several comorbidity evaluation scores and laboratory markers. Conclusion We identified risk factors consistently associated with the incidence of POD in knee and hip replacement. Strategies and interventions should be implemented to the patients receiving knee or hip replacement with potential risk factors identified in this meta-analysis.
Within tissue exposed to the systemic immune system, lymphocytes and fibroblasts act against biomaterials via the development of a fibrous capsule, known as the foreign body reaction (FBR). Inspired by the natural tolerance that the uterine cavity has to foreign bodies, our study explores the role of microenvironment across classical (subcutaneous) and immune privileged (uterine) tissues in the development of the FBR. As a model biomaterial, we used electrospun fibers loaded with sclerosing agents to provoke scar tissue growth. Additionally, we integrated these materials onto an intrauterine device as a platform for intrauterine biomaterial studies. Polyester materials in vitro achieved drug release up to 10 days, greater pro-inflammatory and pro-healing cytokine expression, and the addition of gelatin enabled greater fibroblast attachment. We observed the materials that induced the greatest FBR in the mouse, had no effect when inserted at the utero-tubal junction of non-human primates. These results suggest that the FBR varies across different tissue microenvironments, and a dampened fibrotic response exists in the uterine cavity, possibly due to immune privilege. Further study of immune privileged tissue factors on biomaterials could broaden our understanding of the FBR and inform new methods for achieving biocompatibility in vivo .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.