The asialoglycoprotein (ASGP) receptor is an abundant hepatocyte-specific receptor involved in receptor-mediated endocytosis. This receptor's abundance and function is decreased by chronic ethanol administration prior to the appearance of pathology such as necrosis or inflammation. Hence, this study aimed to determine if ASGP receptor function is required to protect against liver injury by utilizing a knockout mouse model lacking functional ASGP receptor in the setting of carbon tetrachloride (CCl4) hepatotoxicity. Briefly, ASGP receptor-deficient (RD) mice and wild-type (WT) mice were injected with 1 ml/ kg body weight of CCl4. In the subsequent week, mice were monitored for liver damage and pathology (aspartate transaminase (AST), alanine transaminase (ALT) and light microscopy). The consequences of CCl4 injection were examined by measuring α-smooth muscle actin (α-SMA) deposition, contents of malondialdehyde and the percentage of apoptotic hepatocytes. After CCl4 injection, RD mice showed increased liver pathology together with significantly increased activities of AST and ALT compared to that in WT mice. There were also significantly more apoptotic bodies, lipid peroxidation and deposition of α-SMA in RD mice versus WT mice following CCl4 injection. Since these two mouse strains only differ in whether or not they have the ASGP receptor, it can be concluded that proper ASGP receptor function exerted a protective effect against CCl4 toxicity. Thus, receptor-mediated endocytosis by the ASGP receptor could represent a novel molecular mechanism that is responsible for subsequent liver health or injury.
During receptor-mediated endocytosis (RME), extracellular molecules are internalized after being recognized and bound to specific cell surface receptors. In previous studies of the asialoglycoprotein receptor (ASGPR) in rats, we showed that ethanol impairs RME at multiple ASGPR sites. Ethanol administration has been shown to increase apoptosis, and we demonstrated increased sensitization to apoptotic induction in hepatocytes from ethanol-fed rats. Although a physiological role for the ASGPR has not been identified, investigators have shown its involvement in the uptakelclearance of apoptotic cells in vitvo. This suggests apotential role for the ASGPR in the removal of apoptotic cells, and the recent availability of an ASGPR-deficient mouse strain provides an excellent opportunity to examine the role of the ASGPR during ethanol impairment. In this study, we examined ethanol-impaired RME in mice and began the characterization of ASGPR-deficient mice for use in ethanol studies. Similar to our findings with rats, ligand binding, internalization, and degradation were decreased 45-50% in hepatocytes from ethanol-fed wild-type mice. In ASGPR-deficient mice, these parameters did not vary among the chow-fed, pair-fed control, or ethanol groups and were negligible compared with those of wild-type mice. TUNEL analysis of liver sections showed an ethanol-induced increase in apoptotic bodies in all mouse strains with a significant difference in the receptor-deficient mice. Further, the livers of ASGPR-deficient mice had three times more apoptotic bodies, in all feeding groups, compared with wild-type mice. These results support the use of the ASGPR-deficient mouse model for studying ethanol-induced liver injury, specifically ethanol-induced apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.