Low-intensity MR-guided focused ultrasound in combination with intravenously injected microbubbles is a promising platform for drug delivery to the central nervous system past the blood-brain barrier. The blood-brain barrier is a key bottleneck for cancer therapeutics via limited inter- and intracellular transport. Further, drugs that cross the blood-brain barrier when delivered in a spatially nonspecific way, result in adverse effects on normal brain tissue, or at high concentrations, result in increasing risks to peripheral organs. As such, various anti-cancer drugs that have been developed or to be developed in the future would benefit from a noninvasive, temporary, and repeatable method of targeted opening of the blood-brain barrier to treat metastatic brain diseases. MR-guided focused ultrasound is a potential solution to these design requirements. The safety, feasibility and preliminary efficacy of MRgFUS aided delivery have been demonstrated in various animal models. In this review, we discuss this preclinical evidence, mechanisms of focused ultrasound mediated blood-brain barrier opening, and translational efforts to neuro-oncology patients.
Transcranial MR-guided focused ultrasound (MRgFUS) is a rapidly developing technology in neuroscience for manipulating brain structure and function without open surgery. The effectiveness of transcranial MRgFUS for thermoablation is well established, and the technique is actively employed worldwide for movement disorders including essential tremor. A growing number of centers are also investigating the potential of microbubble-mediated focused ultrasound-induced opening of the blood-brain barrier (BBB) for targeted drug delivery to the brain. Here, we provide a technical overview of the principles, clinical workflow, and operator considerations of transcranial MRgFUS procedures for both thermoablation and BBB opening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.