RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to) *beer2@llnl.gov ABSTRACT. The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing thermal cycling for reverse transcription and subsequent PCR amplification without droplet motion. This combination of the established realtime reverse transcription-PCR assay with digital microfluidics is ideal for isolating single-copy RNA and virions from a complex environment, and will be useful in viral discovery and geneprofiling applications.
Concerns about the use of anthrax spores as a weapon of mass destruction have motivated the development of portable instruments capable of detecting and monitoring a suspected release of the agent. Optimal detection of bacterial spores by PCR requires that the spores be disrupted to make the endogenous DNA available for amplification. The entire process of spore lysis, PCR, and detection can take several hours using conventional methods and instruments. In this report, a minisonicator and prototype spore lysis cartridge were built to disrupt Bacillus spores in 30 s for rapid, real-time PCR analysis. Utilization of the minisonicator improved PCR analysis by decreasing the limit of detection, reducing the time of detection, and increasing the signal amplitude. Total time of spore disruption and detection using the minisonicator and a microchip PCR instrument was less than 15 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.