Based on the 0.5 μm GaAs enhancement/depletion (E/D) Pseudomorphic High Electron Mobility Transistor (pHEMT) process, a 7.5–9 GHz two-channel amplitude phase control multi-function chip (MFC) was developed successfully. The chip was integrated with a 6-bit digital phase shifter, a 6-bit digital attenuator, and a single pole single throw (SPST) switch in each channel. A design for the absorptive SPST switch is deployed to optimize the return loss and control channel array calibration. In the 8 dB and 16 dB attenuation bit, a switched-path-type topology is employed in order to obtain a good flatness of attenuation characteristic and achieve low additive phase shift. A 27-bit serial-to-parallel converter (SPC) was introduced to decrease the control lines and pads of the chip, and the power consumption was less than 70 mW. The measurement result shows that the insertion loss is less than −13 dB and the return loss is better than −19 dB. In both channels, the 64-state root mean square (RMS) errors of the phase shifter is less than 2° and the RMS parasitic amplitude error is less than 0.2 dB. The RMS attenuation error is less than 0.45 dB and the RMS parasitic phase error is less than 2.4°. The size of the chip is 3.5 mm × 4.5 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.