We provide an overview of the recent progresses on the system architecture design and performance prediction for microwave signal detection under weak signal intensity regime, up to quantumized level. The technique roadmap includes two perspectives, the opto-electro-mechanical (OEM) and superconducting devices. For the former one, we first overview the concept of OEM, and then introduce the signal detection based on capacitive-opto-electro-mechanical systems and piezoopto-electro-mechanical systems. For the latter one, we first overview the concept and architecture of Josephson junction, and then introduce the signal detection based on superconducting Hanbury Brown-Twiss (HBT) experiments and Λ energy-level splitting system. Besides, we review the microwave detection based on Rydberg atom system. We believe that this overview can provide a guidance for future transmission limit, signal processing, detection device fabrication and real experiments.
We propose a novel radio-frequency (RF) receiving architecture based on micro-electro-mechanical system (MEMS) and optical coherent detection module. The architecture converts the received electrical signal into mechanical vibration through the piezoelectric effect and adopts an optical detection module to detect the mechanical vibration. We analyze the response function of piezoelectric film to an RF signal, the noise limited sensitivity of the optical detection module and the system transfer function in the frequency domain. Finally, we adopt simple on-off keying (OOK) modulation with bandwidth 1 kHz and carrier frequency 1 GHz, to numerically evaluate the detection sensitivity. The result shows that, considering the main noise sources in wireless channel and circuits, the signal detection sensitivity can reach around −160 dBm with a 50 Ω impedance. Such sensitivity significantly outperforms that of the currently deployed Long Term Evolution (LTE) system, when normalizing the transmission bandwidth also to 1 kHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.